Appendix 1: Introduction to basic measurements and conventions

A1.1 Units used in Forestry

Forestry Commission

Linear measurements		
cm	Centimetre	0.01 metre
m	Metre	
km	Kilometre	1 000 metres
Area measurements		
m ²	Square metre	
ha	Hectare	10 000 m ²
Volume measurement		
m ³	Cubic metre	1 000 litres
Weight measurement		
Tonne		1 000 000 grams

Constants: $\pi = 3.1415927$. As a convention 1 m³ of water is taken to weigh 1 tonne.

A1.2 Measuring diameter

All diameters should be measured in centimetres. Diameters of individual trees are conventionally rounded down to the nearest whole centimetre. Mean diameters may be recorded to the nearest whole centimetre

Diameters may be measured with a special tape marked in cm diameter, known as a girthing tape, which is placed round the circumference of the tree or log. Girthing tapes which are marked in rounded down 1 cm diameter classes are available from specialist suppliers (see Figure A1.1). In cases where the zero point is found to fall on the dividing line between two diameter classes, the higher diameter class should be used.

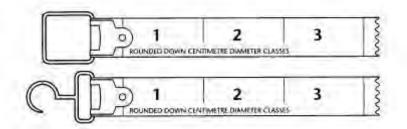


Figure A1.1: Examples of girthing tapes – the dotted line shows the zero point.

Diameters can also be measured with manual or electronic callipers, while the diameters of stumps and of the ends of logs are usually measured with a timber or log rule.

A1.2.1 Measuring diameter at breast height

The dbh is the diameter of the trunk at 1.3 m above ground level (breast height). In forestry in the UK trees with a dbh of less than 7 cm are assumed to have no timber **volume and are conventionally classified as 'unmeasurable', however for the purposes of** carbon assessment this minimum dbh will ultimately be reduced to 4 cm.

There are conventions for determining the point on the stem where the beast height should be measured. On sloping ground, this is the ground level on the upper side of the tree, while on leaning trees on level ground, this is the ground level on the underside of the tree. More details are given in Forest Mensuration: a handbook for practitioners pages 36-37.

A1.2.2 Calculating mean dbh

The mean diameter of a stand or group of trees is the diameter of the tree of mean basal area, which is the same as the quadratic mean of the dbh's of all the trees. Unmeasurable trees (*i.e.* with a dbh of less than 7 cm) are normally excluded from this calculation, but if they are included this should be clearly stated. The mean diameter can be calculated using one of two methods:

- Using a calculator or computer
- Using a table of basal areas.

Using a scientific calculator or computer

- a. Square each dbh.
- b. Add all the squared values together.
- c. Divide by the number of trees, to give the mean squared dbh.
- d. Calculate the square root of this value, to give the quadratic mean dbh.

That is:

Quadratic mean dbh =
$$\sqrt{\left(\frac{dbh_1^2 + dbh_2^2 + dbh_3^2 + K + dbh_n^2}{n}\right)}$$

Where dbh_i = breast height diameter, in cm, of the i^{th} sample tree n = total number of sample trees.

Using Table A1.1 below

- a. Convert each dbh into the equivalent basal area.
- b. Add all the basal areas together.
- c. Divide by the number of trees, to give the mean basal area.
- d. Convert this to the quadratic mean dbh (using Table A1.1 in reverse), rounding down to the nearest centimetre dbh class when necessary.

Table A1.1 Basal areas

Dbh or diameter	Basal area or cross-	Dbh or	Basal area or cross-
(cm)	sectional area (m ²)	diameter(cm)	sectional area (m ²)
7	0.0038	34	0.091
8	0.0050	35	0.096
9	0.0064	36	0.102
10	0.0079	37	0.108
11	0.0095	38	0.113
12	0.0113	39	0.119
13	0.0133	40	0.126
14	0.0154	41	0.132
15	0.018	42	0.139
16	0.020	43	0.145
17	0.023	44	0.152
18	0.025	45	0.159
19	0.028	46	0.166
20	0.031	47	0.173
21	0.035	48	0.181
22	0.038	49	0.189
23	0.042	50	0.196
24	0.045	51	0.204
25	0.049	52	0.212
26	0.053	53	0.221
27	0.057	54	0.229
28	0.062	55	0.238
29	0.066	56	0.246
30	0.071	57	0.255
31	0.075	58	0.264
32	0.080	59	0.273
33	0.086	60	0.283

A1.2.3 Mid diameter

The mid-sectional diameter is measured at the mid-point of the rounded down length section. If the mid diameter falls on a whorl or swelling the diameter should be measured immediately above it (towards the small end). If the mid diameter of a timber length falls below the breast height point on the standing tree, the dbh should be regarded as the mid diameter. Mid diameter should be measured consistently either overbark or underbark.

A1.3 Measuring height

Lengths and heights should be measured in metres. They are conventionally rounded down to the nearest 0.1 m for lengths up to 10 m, and to the nearest whole metre for lengths greater than 10 m.

A1.3.1 Measuring length

The length of a piece of felled timber should be measured with a tape in a direct line from end to end (Figure 2). This is a revision to a previous convention that involved measurement along the curve of the log.

Figure A1.2 - The method of assessment of length on curved logs

A1.3.2 Total height

The total height of a standing tree is the vertical distance from the base of the tree to the uppermost point (tip). The total length of a felled tree is the straight line distance from the base to the tip. The total height of young standing trees can be measured with graduated poles. The total height of felled trees should be measured with a tape. The total height of other trees should be measured with a manual or electronic hypsometer or clinometer, and the instructions supplied with the instrument should be followed. Each tree should ideally be measured from opposite sides perpendicular to any lean, and the two measurements averaged. The distance of the observation points from the tree should be in the region of 1 to 1.5 times the height of the tree. When measuring the heights of trees it is important to remember that accurate use of hypsometers or clinometers requires training, checking, and, most of all, practice.

A1.3.3 Timber height

The timber height of a tree (or the timber length) is the distance from the base of the tree to the lowest point on the main stem where the diameter is 7 cm overbark. In hardwoods and occasionally in conifers this point may alternatively be the 'spring of the crown'; *i.e.* the lowest point at which no main stem is distinguishable. It should be measured in exactly the same way as total height.

A1.4 Classifying trees as live or dead

If the cambium is either active or dormant, the tree is classed as alive. Otherwise it is classes as dead.

A1.5 Classifying maturity.

Maturity is defined as one of three classes for the purposes of this assessment:

- Seedling: Any tree less than 50 cm tall
- Sapling: Any tree that is more than 50 cm tall and less than 7 cm dbh.
- Tree: Any tree with dbh equal to or greater than 7 cm.

A1.6 Species.

Standard species abbreviations are given in Appendix 2 (on page 75).

Appendix 2: Standard species abbreviations

The following standard abbreviations for species are used throughout this document.

SpeciesabbreviationCommon nameLatin nameAHashFraxinus spp.ARalderAlnus spp.BEbeechFagus sylvaticaBIbirchBetula spp.BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
ARalderAlnus spp.BEbeechFagus sylvaticaBIbirchBetula spp.BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLeyland cypressCupressocyparis leylandiiLIlimeTillia spp.LPlodgepole pinePinus contorta var latifolia
ARalderAlnus spp.BEbeechFagus sylvaticaBIbirchBetula spp.BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLeyland cypressCupressocyparis leylandiiLIlimeTillia spp.LPlodgepole pinePinus contorta var latifolia
BEbeechFagus sylvaticaBIbirchBetula spp.BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
BIbirchBetula spp.BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
BIPBishop pinePinus muricataCPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLewson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
CPCorsican pinePinus nigra var maritimaDFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLewson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
DFDouglas firPseudotsuga menziesiiELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLPIodgepole pinePinus contorta var latifolia
ELEuropean larchLarix deciduaEMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
EMelmUlmus spp.GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
GFgrand firAbies grandisHBMhornbeamCarpinus betulusHLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
HBMhornbeamCarpinus betulusHLhybrid larchLarix × eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
HLhybrid larchLarix x eurolepisJCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
JCRJapanese cedar/SugiCryptomeria japonicaJLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
JLJapanese larchLarix kaempferiLCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
LCLawson cypressChamaecyparis lawsonianaLECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
LECLeyland cypressCupressocyparis leylandiiLIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
LIlimeTilia spp.LPlodgepole pinePinus contorta var latifolia
LP lodgepole pine <i>Pinus contorta</i> var <i>latifolia</i>
51 1
MAP maritime pine <i>Pinus pinaster</i>
MET dawn redwood (Metasequoia) <i>Metasequoia glyptostroboides</i>
MX mixed species
NF noble fir Abies procera
NOM Norway maple <i>Acer platinoides</i>
NS Norway spruce <i>Picea abies</i>
OBN southern beech/roble Nothofagus obliqua
OK oak <i>Quercus</i> spp.
OMS Omorika spruce (Serbian spruce) <i>Picea omorika</i>
PDP ponderosa pine <i>Pinus ponderosa</i>
PO poplar Populus spp.
PRN southern beech/rauli Nothofagus procera
RAP radiata pine (Monterey pine) <i>Pinus radiata</i>
RC western red cedar <i>Thuja plicata</i>
ROK red oak <i>Quercus rubra</i>
RSQ coast redwood <i>Sequoia sempervirens</i>
SC sweet/Spanish chestnut <i>Castanea sativa</i>
SP Scots pine <i>Pinus sylvestris</i>
SS Sitka spruce <i>Picea sitchensis</i>
SY sycamore <i>Acer pseudoplatanus</i>

Standard species abbreviations (continued)

Species abbreviation	Common name	Latin name
ТОК	Turkey oak	Quercus cerris
WEP	Weymouth pine	Pinus strobus
WH	western hemlock	Tsuga heterophylla
WSQ	Wellingtonia (giant redwood)	Sequoiadendron giganteum
XB	miscellaneous broadleaf	
XC	miscellaneous coniferous	
XF	miscellaneous fir	Abies spp.
XP	miscellaneous pine	Pinus spp.
XS	miscellaneous spruce	Picea spp.

Appendix 3: Estimating the tariff number of minor tree species.

This table lists the available relationships for estimating the tariff number of major tree species in Britain. For those species where no relationship has been characterised the table suggests an alternative. It must be stressed that many of these equivalencies for minor species are provisional and the tariff number derived in this way should be regarded as the currently best available estimate.

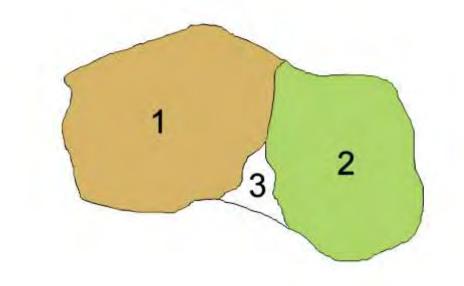
Common name	Abbreviation	Single tree tariff	Stand tariff from top height
beech	BE	•	ОК
English elm	-	•	ОК
hornbeam	-	BE	BE
pedunculate oak	ОК	•	•
raoul	-	BE	BE
roble	-	BE	BE
red oak	-	BE	OK
sessile oak sweet chestnut/Spanish	ОК	•	•
chestnut	-	BE	OK
wych elm	-	•	ОК
Corsican pine	СР	•	•
Monterey pine	-	СР	СР
western red pine	-	СР	СР
Bishop pine	-	LP	LP
Douglas fir	DF	•	•
European Iarch	EL	•	•
hybrid larch	HL	•	•
Japanese larch	JL	•	•
coast redwood	-	GF	GF
grand fir	GF	•	•
Wellingtonia/giant sequoia	-	GF	GF
lodgepole pine	LP	•	•
maritime pine	-	LP	LP

77 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

L


Estimating the tariff number of minor tree species (continued)

Common name	Abbreviation	Single tree tariff	Stand tariff
European silver fir	-	NF	NF
noble fir	NF	•	•
Nordmann fir	-	NF	NF
Siberian fir	-	NF	NF
blue spruce	-	NS	NS
Englemann spruce	-	NS	NS
Norway spruce	NS	•	•
Omorika spruce	OMS	NS	NS
oriental spruce	-	NS	NS
white spruce	-	NS	NS
Sitka spruce	SS	•	•
Lawson cypress	LC	RC	RC
Leyland cypress	-	RC	RC
Monterey cypress	-	RC	RC
Nootka cypress	-	RC	RC
western red cedar	RC	•	•
ash	AH	•	OK
bird cherry	-	BI	BI
black poplar	-	•	BI
common alder	-	BI	OK
downy birch	BI	•	•
field maple	-	SY	BI
grey alder	-	BI	OK
hazel	-	BI	BI
horse chestnut	-	SY	ОК
hybrid black poplar	-	•	BI
Italian alder	-	BI	ОК
London plane	-	SY	-
Norway maple	-	SY	BI
silver birch	BI	•	•
sycamore	SY	•	BI
wild cherry	-	BI	BI
Scots pine	SP	•	•
Ponderosa pine	-	SP	SP
Weymouth pine/(eastern) white		CD	CD
pine	-	SP	SP
western hemlock	WH	•	•

Appendix 4: Worked example for a 10.2ha conifer project

Description:

A 10.2 ha conifer woodland - "Greenwood", composed of a 6 ha compartment/stand of variable Scots pine (1), a 3.8 ha compartment/stand of uniform Corsican pine (2) and a 0.4 ha compartment of open space with no trees present (3). The trees in each compartment were planted at the same time and there are no differences large enough to require further stratification of compartments/strata.

Using the decision tree in Figure 4.1 (page 26) Method C was chosen to estimate the above ground "tree" carbon in the project.

Field work

Number of sample plots required:

Compartment 1 = Variable stand between 2-10 ha (see Table 4.1.4) = 12 plots

Compartment 2 = uniform stand between 2-10 ha = 8 plots

Compartment 3 = no trees = no plots.

79	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
, ,	0101011 210		00/00/2010

Size of plots:

Compartment 1 = Older, well spaced stand = 0.02 ha plots, radius = 8.0 metres.

Compartment 2 = closely-spaced young stand = 0.01 ha plots, radius = 5.6 metres.

The appropriate data collection form (see Appendix 7) was used to collect plot, dbh and height data for the two compartments/strata within the project containing trees. The completed forms are shown in Figures A4.1 to A4.4. Note that the height sample trees selected and recorded in Section 3 of the form are also recorded in Section 2. This is a useful check – if any of the diameters of the trees recorded in Section 3 of the form are not recorded in Section 2 the method has not been followed correctly.

Office work and calculations

Compartment 1:

Number of trees in stratum:

Total number of trees in all (12) plots = 146

Area of all plots = 12×0.02 ha = 0.24 ha

Average number of trees per hectare = 146/0.24 = 608.33

Number of trees in compartment = 608.33×5.6 ha (net area) = 3406

Mean (quadratic) dbh:

The number of trees in each centimetre dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A4.1). To calculate the mean (quadratic) dbh, multiply the number of trees in each class by the square of the dbh for each class. Next, add the results together for each class and divide by the number of trees measured. For the current example, this calculation gives a mean "squared" dbh of 629.27. The square root of this value gives the mean (quadratic) dbh:

$$\sqrt{629.27} = 25.1 \text{ cm}$$

80 Version 2.0

T.A.R. Jenkins *et al.*

L

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5.

Mean basal area = $\frac{\pi \times 25.1^2}{40000}$ = 0.049 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into Equation 3, described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for Scots pine were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 582

 $582 \div 24 = 24.2$ rounded down to a stand tariff number of 24.

Mean merchantable tree volume:

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.049) = 0.344 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 24) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (24 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.344 \times 1.01 = 0.34744 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.34744 \times 3406 = 1183.4 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $1183.4 \times 0.42 = 497.0$ oven dry tonnes.

Crown biomass per tree:

The quadratic mean dbh already calculated for the Scots pine in stratum 1 is 25.1 cm. The crown biomass (branches and foliage) is therefore estimated using Equation 6 (page 52) and the species-specific parameters for Scots pine from Table 5.2.2 (page 52).

Crown biomass = $0.0000161411 \times 25.1^{2.4767} = 0.047261$ oven dry tonnes

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.047261 \times 3406 = 161.0$ oven dry tonnes.

Root biomass per tree:

Because the quadratic mean dbh is less than 30 cm, root biomass is estimated using Equation 8 (page 54) with the species-specific parameters for Scots pine from Table 5.2.4 (page 54).

Root biomass = $0.000015404 \times 25.1^{2.5} = 0.04862$ oven dry tonnes

L

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.04862 \times 3406 = 165.6$ oven dry tonnes.

Total above ground tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem and crown components in the stratum and multiplying by 0.5:

 $(497 + 161.0 + 165.6) \times 0.5 = 411.8$ tonnes C (carbon).

Compartment 2:

Number of trees in stratum:

Total number of trees in all (8) plots = 107

Area of all plots = 8×0.01 ha = 0.08 ha

Average number of trees per hectare = 107/0.08 = 1337.5

Number of trees in compartment = 1337.5×3.6 ha (net area) = 4815

Mean (quadratic) dbh:

The number of trees in each centimetre dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A4.1). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 338.11. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{338.11} = 18.4$ cm

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5.

mean basal area = $\frac{\pi \times 18.4^2}{40000}$ = 0.027 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into Equation 3, as described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for Corsican pine were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 337

 $337 \div 16 = 21.06$ rounded down to a stand tariff number of 21.

Mean merchantable tree volume:

The mean tree volume is calculated using Equation 5 in Section 4.1.5 based on the stand tariff number and the mean basal area (from the quadratic mean dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.027) = 0.157 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 21) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (21 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.157 \times 1.02 = 0.16014 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.16014 \times 4815 = 771.1 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $771.1 \times 0.40 = 308.4$ oven dry tonnes.

Crown biomass per tree:

The quadratic mean dbh already calculated for the Corsican pine in stratum 2 is 18.4 cm. The crown biomass (branches and foliage) is therefore estimated using Equation 6 (page 52) and the species-specific parameters for Corsican pine from Table 5.2.2 (page 52).

Crown biomass = $0.0000122645 \times 18.4^{2.4767} = 0.016643$ oven dry tonnes

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.016643 \times 4815 = 80.1$ oven dry tonnes.

Root biomass per tree:

Because the quadratic mean dbh is less than 30 cm, root biomass is estimated using Equation 8 (page 54) with the species-specific parameter for Corsican pine from Table 5.2.4 (page 54).

Root biomass = $0.000010722 \times 18.4^{2.5} = 0.015571$ oven dry tonnes

85 Version 2.0

L

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.0115571 \times 4815 = 74.98$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem and crown components in the stratum and multiplying by 0.5:

 $(308.4 + 101.1 + 74.98) \times 0.5 = 242.24$ tonnes C (carbon).

For the project:

Total above ground tree carbon for the project:

This is the sum of the carbon estimates for all of the strata in the project (compartment 3 does not contain trees so there is no (tree) carbon associated with it):

Total carbon = 411.8 + 242.24 = 654 tonnes C (carbon).

The estimated total carbon dioxide sequestered in the project is calculated as:

654 tonnes C × 44 ÷ 12 = 2 398 tCO₂e

It is this final figure (2 398 tCO₂e) which should be reported under the Woodland Carbon Code.

METHOD C

Section 1 - Basic stand information

Woodland: GREEN WOOD	
Stand/Stratum:/	
Species: KOTS PINE (ST)
Age: 43	-
Gross Area: 6	_
Net area: 5-6	_

Total area of plots: O	
Mean basal area:	r
Mean dbh:	C
(estimated from mean bas	al area)
Date measured:or/o	2/2011
	M

Dbh		_	Cour	nt of	trees	(use	e gate	e styl	e, i.e	. 14)		
(cm)		Plot number						1					
	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7	1				1		1				1000		
8									1				1
9					-		-					1	
10													
1												-	
2				-			-			1	· · · · · ·	_	-
3									-	1			
4	-						1		1		1.0		
5	1	1			1	-	1	-					
6	H	1	1		1			1		111		1	9
7	1	1			1	1	-	1				1	5
8	1		1			1	1			11	-	11	8
9	0	1			1	11		11		1			9
20	1		1				111				1	1	7
1	11	1				1				1	1		5
2	111	1	1	1	1				11		_	1	9
3		1	1			1	1		111			1	8
4	1	11		1	-				11		1		7
5			1	1	1			1		1	11		7
6			1		HI	1	-	-	1	1		1.1	7
7	11					11	11	11	1		111	1	13
8		1	1	1	11	1		11	1	111	1	1	13
9	-	1	11	Ĩ.	11	11	1	11		1	11	11	16
30					1		11		-		1		4
1	1	1	1			1	1	1	M		1	1	10
2			1	1	11	1	1	1		11	1		1
3			1			1	-					1	
4	1							-					
5													
6					1	1			1				
7		-								-			
8													
9								1				1.	
TOTAL	16	10	12	6	15	13	11	13	12	15	14	9	146

Section 2 - Details of number of trees and dbhs in plots

1 of 2

Figure A4.1: Page 1 of completed data collection form for compartment 1.

1

METHOD C

		(code) (cm) (m)		Tariff no. (round to nearest)
1	SP	22	13.5	23
2		27	16.1	26
3	-	29	14-1	23
4	- 14	21	13.7	24
5	4.4	20	13.7	24-
6	14	25	15.4	25
7	- 61-	22	12.7	22
8	**	24	14-7	24
9	- ie	30	14.6	24
10	10	28	14.7	24
11	31.	26	15.6	25
12	- 54	23	14-1	24
13	44	20	15	25
14	16	30	14.2	23
15	44	27	15.8	25
16	- SPE	28	14.2	23
17		23	15.4	25
18		26	14.2	24
19	44	21	14-9	25
20		29	15.7	25
21		27	15.1	25
22		25	14.6	24
23	1.1	27	14.8	24
24	5 X.	29	16.4	26
			Total:	582
	Mea	an tariff	number:	24

Section 3 - Details of height and diameter sample trees

2 of 2

Figure A4.2: Page 2 of completed data collection form for compartment 1.

METHOD C

Section 1 - Basic stand information

Woodland:	REEN	WOOD
Stand/Stratu	m:	2
Species:	SICAN	PINE (CP)
Age:	25	
Gross Area:	3.8	
Net area:	3.6	-

Total area of plots: 0	08 (ha
Mean basal area:	n
Mean dbh:	cr
(estimated from mean bas	al area)
Date measured: 02/0	2/201
Measured by: J. SM	ITH

Dbh			Cour	nt of	trees	(use	gate	e style	e, i.e.	UH)			
(cm)	1					Plot n	umb	er					
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7						1				1.000			1.00
8						-		-		100			
9											1		
10											1		
1		1			1	-				1.1.1	-		
2	1			1		1	Im		100				6
3	11		1	1111	HH	_	1						12
4	1	11		11	1	1	1	1.00		1000			7
5	1	1	IIII				1	1					6
6	1	111					111	12. 22					7
7	111			11	11	IU	m	11					15
8	11				14	u		1					9
9	1	1	11	1	1		1						7
20		1			1	M	1						5
1		1		1		1	1	1.1.1					4
2	1	1	11	10)	11(1)	1	Î	11	-		-		15
3				11			1						2
4	11	1	111		1	11	1	11					12
5					-							1	
6											1		
7													
8				-			1		-				
9								1			200		-
30								1			1		
1						-		1.1.1				100	
2									-		1	1	
3								1.1	-				1
4													
5			1										
6								1					1
7													
8													
9							1						1
TOTAL	15	11	12	15	18	14	15	7					107

Section 2 - Details of number of trees and dbhs in plots

1 of 2

Figure A4.3: Page 1 of completed data collection form for compartment 2.

T.

METHOD C

No.	Species (code)	Dbh (cm)	Height (m)	Tariff no. (round to nearest)
1	CP	13	11.7	23
2	47	17	12.3	23
3		16	11	21
4	**	16	11.3	22
5		24	10.2	18
6		24	11.7	21
7	4	14-	11-3	22
8	- 14	23	12.1	22
9	45	17	10.2	19
10	4.1	13	10.1	20
11	44	2.2	11-3	21
12	44	17	11.7	22
13	44.	24	11.6	21
14	44	17	11.5	2.2
15	34	24	11.7	21
16	344	17	9.6	19
17				1
18		1		
19				
20			· · · · · · · · · · · · · · · · · · ·	
21				
22				
23				
24		1		
			Total:	337
	Mea	n tariff	number:	21

Section 3 - Details of height and diameter sample trees

(Rounded down)

2 of 2

Figure A4.4: Page 2 of completed data collection form for compartment 2.

Version 2.0 90 1

T.A.R. Jenkins *et al.*

05/03/2018

Appendix 5: Worked example for a small-scale broadleaf project

Carbon assessment protocol: Broadleaf project example

Description:

A 1.12 ha broadleaved woodland – "Coed Glas", containing an intimate mixture of approximately 1400 stems of oak, ash and birch approximately 30 years old. Oak and ash are the major tree species, with birch making up less than 10% of the total number of tree stems. Ash and birch were therefore treated as one species group and oak as another.

Using the decision tree in Figure 4.1 (page 26) Method E was chosen to estimate the above ground "tree" carbon in the project.

Field work

Sampling fraction:

Oak = approximately 700 stems

Looking at Table 3.2.2 the recommended dbh sampling fraction is 1:6 and 1:10 of the dbh sample trees will be assessed as height sample trees. The diameter of every 6th tree was therefore measured and every 60th tree had timber height assessed.

Ash and birch = approximately 700 stems

Looking at Table 3.2.2 the recommended dbh sampling fraction is 1:6 and 1:10 of the dbh sample trees will be assessed as height sample trees. The diameter of every 6th tree was therefore measured and every 60th tree had timber height assessed.

The data collection form (see Appendix 7) was used to collect plot, dbh and height data for the two compartments/strata within the project containing trees. The completed forms are shown in Figures A5.1 to A5.3.

Office work and calculations

The following section follows the procedure set-out in Section 4.2.3, starting on page 44.

L

Seedlings:

There were no seedlings recorded. No further office work is therefore required for seedlings.

Saplings:

There were no saplings recorded. No further office work is therefore required for saplings.

Trees:

Total stem volume

See page 45.

a. Tariff numbers were estimated for each sample tree with a dbh of 10 cm or greater using Equation 2 on page 45 and the species-specific constants listed in Table 4.2.3 on the same page.

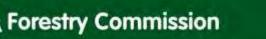
For the oak component, the equation used is:

 $T = 5.88300 + (2.01230 \times h) + (-0.0054780 \times dbh) + (-0.0057397 \times dbh \times h)$

Where T is the species-specific single tree Tariff number being calculated.

Taking tree number 1 from Figure A5.1 on page 80 as an example:

dbh = 17 cm timber height = 10.6 m


 $T = 5.88300 + (2.01230 \times 10.6) + (-0.0054780 \times 17) + (-0.0057397 \times 17 \times 10.6)$

T = 26.09

Single tree tariff numbers are always rounded to the nearest whole number. In this instance a Tariff number of 26 is recorded.

The above calculation is repeated for each oak sample tree with a dbh of 10 cm or greater.

92	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
----	-------------	------------------------------	------------

For the ash component, the corresponding single tree Tariff equation used is:

 $T = 9.16050 + (2.02560 \times h) + (-0.0668420 \times dbh) + (-0.0044172 \times dbh \times h)$

Taking tree number 26 from Figure A5.1 on page 80 as an example:

dbh = 25 cm timber height = 8.8 m

 $T = 9.16050 + (2.02560 \times 8.8) + (-0.0668420 \times 25) + (-0.0044172 \times 25 \times 8.8)$

T = 24.34

Single tree tariff numbers are always rounded to the nearest whole number. In this instance a Tariff number 24 is recorded.

The above calculation is repeated for each ash sample tree with a dbh of 10 cm or greater.

b. The average tariff number is calculated for each species.

For the oak component of the stand, the average tariff number is:

 $235 \div 9 = 26.11$

The average Tariff number is always rounded down and an average of 26 is therefore recorded for the oak.

For the ash component of the stand, the average tariff number is:

 $221 \div 9 = 24.56$

The average Tariff number is always rounded down and an average of 24 is therefore recorded for the ash.

c. Calculation of the (quadratic) mean dbh for each species.

The number of trees in each centimetre dbh class for each species (based on adding together the values in each row) is shown in column (3) of Section 4 of the

93		Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
----	--	-------------	------------------------------	------------

data collection form (Figure A5.3). Multiplying the trees in each class (column 3) by the square of the dbh for each class (column 4) and then adding these results together for each class (total, column 5) and dividing by the number of trees measured gives a mean "squared" dbh of 217.5 for oak and 285.4 for ash. The square root of this value gives the mean (quadratic) dbh:

For the oak $\sqrt{217.5} = 14.7 \text{ cm}$ For the ash $\sqrt{285.4} = 16.9 \text{ cm}$

d. Calculate the mean merchantable volume for each species.

Firstly, the (quadratic) mean dbh is converted into the mean basal area for each species using the equation in Section 4.2.3.

Mean basal area (oak) = $\frac{\pi \times 14.7}{40000}$ = 0.017 m² (shown to 3 decimal points)

Mean basal area (ash) = $\frac{\pi \times 16.9}{40000}$ = 0.022 m² (shown to 3 decimal points)

The mean tree basal areas are used in Equation 5 in Section 4.2.3 in conjunction with the average tariff numbers estimated in step b in order to estimate the mean merchantable volume for each species.

Mean merchantable tree volume (oak) = $a_1 + (a_2 \times 0.017) = 0.104 \text{ m}^3$

Mean merchantable tree volume (ash) = $a_1 + (a_2 \times 0.022) = 0.141 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 24) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (24 - 0.138763302)$

e. Estimate the mean total stem volume for each species. The mean total stem volume includes volume above 7 cm top diameter and is calculated by multiplying the appropriate factor given in Table 4.2.5 (page 44) by the mean merchantable volume calculated above.

Mean total stem volume (oak) = $0.104 \times 1.05 = 0.1092 \text{ m}^3$ (unrounded).

Mean total stem volume (ash) = $0.141 \times 1.03 = 0.14523 \text{ m}^3$ (unrounded).

94		Version 2.0	T.A.R. Jenkins <i>et al.</i>	1	05/03/2018
----	--	-------------	------------------------------	---	------------

f. Find the total estimated volume for each species by multiplying the unrounded mean total stem by the estimated total number of trees of that species.

Total estimated volume (oak) = $0.1092 \text{ m}^3 \times 678 \text{ trees} = 74.0 \text{ m}^3$

Total estimated volume (ash) = $0.14523 \text{ m}^3 \times 630 \text{ trees} = 91.5 \text{ m}^3$

Total biomass of stems:

Forestry Commission

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Section 5.2.1):

For the oak,	74.0 $m^3 \times 0.56 = 41.44$ oven dry tonnes.
For the ash,	$91.5 \text{ m}^3 \times 0.53 = 48.50 \text{ oven dry tonnes.}$

Crown biomass per tree:

The quadratic mean dbh already calculated for the oak is 14.7 cm. The crown biomass (branches and foliage) is therefore estimated using Equation 6 (page 52) and the species-specific parameters for oak from Table 5.2.2 (page 52).

Crown biomass = $0.0000168513 \times 14.7^{2.4767} = 0.013114$ oven dry tonnes

There is no crown biomass equation specifically calibrated for ash. The species mapping table for broadleaves (Table 5.2.6 on page 57) indicates that, for estimating crown biomass for ash, it is appropriate to use the species-specific parameters for oak. Substituting the quadratic mean diameter already estimated for ash component (16.9 cm) into Equation 6 (page 52) and mapping to the species-specific parameters for oak from Table 5.2.2 (page 52) therefore gives:

Crown biomass = $0.0000168513 \times 16.9^{2.4767} = 0.018524$ oven dry tonnes

L

Total crown biomass in the stratum:

The total crown biomass in the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total oak crown biomass = $0.013114 \text{ ODT} \times 678 \text{ trees} = 8.89 \text{ oven dry tonnes}$

Total ash crown biomass = $0.018524 \text{ ODT} \times 630 = 11.67$ oven dry tonnes

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). However the calculation using Equation 8 (page 54) will need to be done separately for each species as the quadratic mean diameter differs (14.7 cm for the oak component, 16.9 cm for the ash component).

Root biomass per tree (oak) = $0.0000227 \times 14.7^{2.5} = 0.018807$ oven dry tonnes

Root biomass per tree (ash) = $0.0000227 \times 16.9^{2.5} = 0.026653$ oven dry tonnes

Total root biomass in the stratum:

The total root biomass in the stratum is estimated by multiplying the root biomass per tree by the estimated number of trees of the requisite species present in the stratum:

Total root biomass (oak) = $0.018807 \times 678 = 12.75$ oven dry tonnes.

Total root biomass (ash) = $0.026653 \times 630 = 16.79$ oven dry tonnes.

Total tree carbon in the stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass for the stem, crown and root components in the stratum and multiplying by 0.5:

Carbon in oak = $(41.44 + 8.89 + 12.75) \times 0.5 = 31.54$ tonnes C (carbon).

Carbon in ash = $(48.50 + 11.67 + 16.79) \times 0.5 = 38.48$ tonnes C (carbon).

For the project:

Total above ground tree carbon for the project:

This is the sum of the carbon estimates for all of the species in the project:

Total carbon = 31.54 + 38.48 = 70.02 tonnes C (carbon).

The estimated total carbon dioxide sequestered in the project is calculated as:

70.02 tonnes C × 44 ÷ 12 = 257 tCO₂e

It is this final figure (257 tCO₂e) which should be reported under the Woodland Carbon Code.

Date measured:

HUW NELSON

Measured by:

CARBON ASSE	ESSMENT	DATA CO	LLECTION FOR	M	METHOD (
Section 1 - E	Basic Ass	essment	Information		
Woodland:	COED	deres a		Compartment(s):	
	AK (OK)	, AsH CA		Compartment(s): Gross area (ha): Net area (ha):	1.2

Section 2 - Details of height and diameter sample trees

15 SEPTEMBER 2010

N.B. For conifer species record total height; for broadleaved species record timber height and total height. Tariff number should be rounded to the nearest whole number, except where stated otherwise.

No.	Spp code	Dbh (cm)	Humb (m)	H _{total} (m)	Tariff no.	No.	Spp code	Dbh (cm)	H _{timb} (m)	H _{tatal} (m)	Tariff
1	OK	17	10-6	164	26	26	AH	25	8.8	13.2	24
2	OK	8	1:4	12.4	1	27	AH	23	11.5	17.4	30
3	OK	25	14.6	17-8	33	28	AH.	9	6.0	150	-
4	OK	19	12.5	Ubs	30	29	Att	17	10.0	13-9	28
5	OK	11	7.6	13-1	21	30	BI	19	94	13-1	22
6	OK	15	9.7	14-2	24	31	AH	25	8.8	17.6	24
7	OK	18	13:1	G1	31	32	BI	10	5.2	15.9	16
8	OK	12	10.0	152	25	33	AH	18	8.2	13.0	24
9	OK	8	2.4	11.7	-	34	AH	19	1.18	14.8	29
10	OK	15	67	10.2	19	35	Att	13	8-2	13.9	24
11	OK	17	10.6	14.7	26	36	1				
12	-					37	1	P		34	
13				-		38	100		diam'r.	Contraction of the local division of the loc	
14						39	1		100	×.	
15						40		_			
16						.41		1			
17						42	-				
18						43					-
19	-		-			44				1	
20						45	-				
21						46		-			
22						47	-				
23		-				48	-				
24						49					-
25	-	1		1		50	-			1	-
	Total	(by sp	ecies g	roup):	235	-	Total (by spe	cies gr	oup):	221
		Mean ta			26			lean ta	2		24
		(R	ounded	down)				(Ro	unded	down)	

Sheet 1 of 3

Figure A5.1: Page 1 of completed data collection form for Method E.

98 Version 2.0

T.A.R. Jenkins *et al.*

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD E

Section 3 - Full tree taily

Specie	S: OAK	(01)	_	1	Specie	S: ASH	(AH)	(+ BIRC	H)
HH	HH	THH	HIT	Htt.	IHH	44	HIT	HAT	HHT
HAT	1111	HIT	HHT	+111	HAT	Het	HIT	HIT	SHET
HIT	Att	3411	HIT	利竹	INT	HH	1445	144	HIT
HHT	HHT	开放	114	Att	unt	stt	HHT	HAT	HIT
HIT	Att	HTT	HHT	Htt	HHT	HH	HHT	HHT	444
HIT	Htt	Her	Htt	HAT	HH	LHT	1444	LHT	HH.
UHT	44	44	444	HAT	strt	1444	+#1	THH	HH
441	Att	HT	Htt	Htt	441	THE	Htt	1441	Att
HIT	HHT	att	att	ett	Heft	1444	++++	LLHA	HHT
Att	HT	HHT	HH1	HH	ATT	FAFT	1m	JHT	HIT
HHT	HHT	14:5T	HH	HIT	LHH	444	HH	Htt	utt
HAT	HT	Htt.	with	HIT	444	194	Att	HT	HHT
Att	BTT	HTT	Att	HIT	HAT	7944	Het	HHT	HIT
HHT	ALL	HHT	1441	++++	HHT	HIT	1441	HHT	HHT
HT	HET	1444	HH	SHIT	HH	445	rtt	4445	HH
HHT	(441	HET	sett	2HH	efft	HHT	HHT.	Ht	HH
HIT	HT	HTT	ATT	Ht	LETI	the	LAT	1114	444
HET	1994	444	HIT	HIT	HHT	Artt	444	HIT	HT
AHT	HT	1441	INT	Htt	ITT	HA	1447	HTT	UNT
HHT	HT	1411	Int	HHT	HAT	Het	HIT	LAN	144
Aft	1445	HHT	448	RIC	Htt	LINT	144	1444	HIT
HHT	Ht	ift	Htt	SHIT .	HIT	44++	Litt.	1441	HTT
AHT	utt	++++	JHT	HET	Her	1441	LHT	HH	HALL
HH	HH	Artt	HHT	HAT	Att	HAT	1147	LIFT	HHT
HT	HH	4441	HTT	HIT	HIT	att	HTT	HH	Htt
THA	1111	HH	WAT	HIT	1118	100		1000	
Htt	lett	HH	LHT	Htt		2		10	
III			-				1000	1	
		-					1	1	
-									
							10	-	
-									
		_							
			-	-		-			
							-		
	umber:	63	10	-	12.000	umber:	63	-	_

Sheet 2 of 3

1

Figure A5.2: Page 2 of completed data collection form for Method E.

99 Version 2.0

T.A.R. Jenkins *et al.*

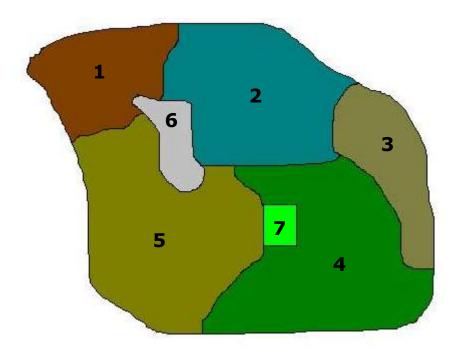
CARBON ASSESSMENT DATA COLLECTION FORM

METHOD E

Section 4 - Diameter distribution & calculation of mean basal area.

	Species: 0		ok)	1	Species: ASH (AH)(+ BI)					
(1) Dbh	(2) tally	(3) n	(4) dbh ²	(5) nxdbh ²	(2) tally	(3) N	(4) dbh ²	(5) n×dbh ²		
7	11 ## 11	7	49	343	11	2	49	98		
8	新新生	15	64	960	1441	4	64	256		
9		6	81	486	101	4	81	324		
10	p(t)	4	100	400	HTI	6	100	600		
1	生了/	6	121	726	11	2	121	2.42		
2	王王	10	144	1440	#1	5	144	720		
3	4417-1	B	169	1014	415)	6	169	1014		
4	11	3	196	588	JHI I	6	196	1176		
5	Hit Hitt)	11	225	2475	HIN	T	2.25	1575		
6	Htt	5	256	1280	HTWL	8	256	2048		
	ANT ANT ANT AN	18	289	5202	HAT HAT II	12	289	3468		
8	KU	4	324	1296	att mi	9	324	2916		
9	HTI	6	361	2166	HAT HAT III	13	361	4693		
0	(10)	4	400	1600	x	1	400	400		
1	1		4441	441	411	6	441	2646		
2	M	3	484	1452	11	2	454	968		
3			1		INI	4	529	2116		
4			100	1						
5	1	1	625	625	1994	6	625	3750		
6	я	2	676	1352	1	10	676	676		
7	i.	1	729	729	10	10				
8						18				
9		-			A.D					
0		1			Carlor		19794	h		
1					1	1	15. 1	-		
2						11	100			
3					_	1	-	-		
4				1	1					
5						1				
6						_				
7			1		1					
8			-	-	-					
9										
0			1		-	-	1000	-		
Mean	otals (Σ) $dbh^2 = Σ(5) \div$ $ba = n \times mean dbh = sqrt(m)$	n dbh ² ÷		24575 217.5 0.01708 14.7	m² cm	104		29686 285.4 0 0224		

Sheet 3 of 3


Figure A5.3: Page 3 of completed data collection form for Method E.

100 Version 2.0 Т T.A.R. Jenkins *et al.*

Appendix 6: Worked example based on a large-scale project

Description:

A 300 ha woodland - "Rob's Wood", is composed of seven compartments as detailed in the table below.

Stratification

The forest area was stratified using the methodology outlined in Section 3 (page 21). None of the 7 compartments were similar enough to any other compartment to allow them to be combined into a single stratum. The trees in compartments 1, 2, 3, and 6 are described as uniform and exhibit no differences large enough to require further stratification of these compartments. In compartment 4 there are three identified strata based on tree size. Compartments 5 and 7 each contain two strata based on species.

Compartment	Species	YC	Planting year	Area (ha)	Stratum
1	BI	N/A	2003	25	
2	SP	8	1970	50	
3	WH	N/A	2010	40	
4	OK	8	1878	31	IV
4	OK	6	1922	37	V
4	OK	8	1960	12	VI
5	SS	16	1984	37.5	VII
5	LP	6	1984	37.5	VIII
6	MB	12	2000	20	IX
7	AH	10	1986	5	Х
7	NS	14	1958	5	XI

Table A6.1: Tree species composition – Rob's wood

Using the decision tree in Figure 4.1 (page 26) the following methods were chosen for each stratum to estimate the above ground "tree" carbon in the project. Compartment 1 is comprised of saplings. Compartment 2 contains two distinct areas of pine. Compartment 3 is made up of seedlings. Compartment 4 is multi-storey. Compartment 5 is a line mixture. Compartment 6 is scrub. Compartment 7 is a closely monitored under-planting experiment of a potential future commercial planting mixture and therefore needs an accurate measurement.

Stratum	Method
	Sapling
	D
111	Seedling
IV	В
V	В
VI	В
VII	С
VIII	С
IX	В
Х	А
XI	А

Pre-field work

Plot size required:

- Stratum I: Saplings are treated differently to trees and require a circular plot of radius 5.6m (0.01 ha).
- Stratum II: The row structure of the 1.8m initial planting space are still clearly visible. Using Table 4.1.3 (page 29) a rectangular plot of 3 rows at 1.8m spacing was selected to give a plot area of 0.01 ha and to contain between 7 and 20 trees.
- Stratum III: Seedlings are treated differently to trees and require a circular plot of radius 5.6m (0.01 ha).
- Stratum IV: The rows can no longer be seen as the stand is now mature and well thinned. A 17.6m radius circular plot (0.1 ha) was selected from Table 4.1.2.
- Stratum V: Although not as old or tall as stratum IV the spacing between trees is approximately the same. A 17.6m radius circular plot (0.1 ha) ha will be used.
- Stratum VI: Although not as old or tall as stratum V the spacing between trees is approximately the same. A 17.6m radius circular plot (0.1 ha) ha will be used.
- Stratum VII: This is a line mix with stratum VIII at a 1.8m planting spacing. The rows are still clearly visible so using a rectangular plot of 4 rows at 1.8m spacing will give a plot area of 0.02 ha and contain between 7 and 20 trees.
- Stratum VIII: This is a line mix with stratum VII at a 1.8m planting spacing. The rows are still clearly visible so a rectangular plot of 4 rows at 1.8m spacing will give a plot area of 0.01 ha and contain between 7 and 20 trees.
- Stratum IX: This scrubby compartment contains a few scattered trees. A circular plot of 0.1 ha will be used.
- Stratum X: The rows are still clearly visible for the original planting spacing of 1.5m. Using table 4.1.3 a rectangular plot of 3 rows at 1.5m spacing will give a plot area of 0.02 ha and contain between 7 and 20 trees.
- Stratum XI: : This well maintained plot of NS initially planted at 2 m spacing has been well thinned to approximately 10 m spacing. A 0.1 ha square plot should contain between 7 and 20 trees.

Number of sample plots required:

Table 4.1.4 is used to estimate the number of sample plots required.

Stratum I = Uniform stand over 10 ha = 10 plots. Stratum II = Uniform stand over 10 ha = 10 plots. Stratum III = Uniform stand over 10 ha = 10 plots. Stratum IV = Uniform stand over 10 ha = 10 plots. Stratum VI = Uniform stand over 10 ha = 10 plots. Stratum VI = Uniform stand over 10 ha = 10 plots. Stratum VII = Uniform stand over 10 ha = 10 plots. Stratum VIII = Uniform stand over 10 ha = 10 plots. Stratum IX = Uniform stand over 10 ha = 10 plots. Stratum IX = Uniform stand over 10 ha = 10 plots. Stratum IX = Uniform stand over 10 ha = 10 plots. Stratum IX = Uniform stand over 10 ha = 8 plots. Stratum XI = Uniform stand 2 - 10 ha = 8 plots.

Field work

Appropriate data collection forms (see Appendix 7) were used to collect plot, dbh and height data for the strata within the project containing trees. The completed forms are shown in Figures A6.1 to A6.21. Note that in methods B and C the height sample trees selected and record in Section 3 of the form are also recorded in Section 2. This is a useful check - if any of the diameters of the trees recorded in Section 3 of the form are not recorded in Section 2 the method has not been followed correctly.

Office work and calculations

Stratum I (containing only saplings):

Average height of saplings:

The total heights are shown in section 2 of the sapling data collection form (see Figure A6.1). There are 10 heights in total which add up to a total of 50.8 m. The arithmetic mean height is 5 m.

Number of saplings in stratum:

Total number of saplings in all (10) plots = 289

Area of all plots = 10×0.01 ha = 0.1 ha

Average number of saplings per hectare = 289/0.1 = 2890

 104
 Version 2.0
 T.A.R. Jenkins *et al.* 05/03/2018

Number of saplings in compartment = 2890×24 ha (net area) = 69360

Total above ground sapling carbon in stratum:

The mean sapling height of 5m is calculated in section 2 of the data form.

The mean carbon content per sapling derived from Table 6.1.3 (page 64) is 0.0015756 tonnes C (carbon)

The total carbon in the stratum is calculated by multiplying the mean carbon content of one sapling by the total number of saplings in the stratum:

 $0.0015756 \times 69360 = 109.28$ tonnes C (carbon).

Stratum II (using Method D):

Number of trees in stratum:

Total number of trees in all (10) plots = 169

Area of all plots = 10×0.01 ha = 0.1 ha

Average number of trees per hectare = 169/0.1 = 1690

Number of trees in compartment = 1690×45 ha (net area) = 76050

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.3). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 143.97. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{143.97} = 11.9 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5.

105	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Mean basal area = $\frac{\pi \times 11.9^2}{40000}$ = 0.011 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The sum of the total heights is 101m.

The arithmetic mean is the sum of the heights divided by the number of trees:

101/10 = 10.1 m. This is the top height.

The stand tariff number is calculated by entering the top height into Equation 4, described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for Scots pine were selected.

The tariff number is 19.

Mean merchantable tree volume:

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.011) = 0.632 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 19) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (19 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.632 \times 1.09 = 0.68888 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

106		Version 2.0	T.A.R. Jenkins <i>et al.</i>	1	05/03/2018
-----	--	-------------	------------------------------	---	------------

Total stem volume in stratum = $0.68888 \times 76050 = 52389.3 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $52389.3 \times 0.42 = 22003.51$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for Scots pine with quadratic mean dbh 11.9 cm, the estimated crown biomass per tree is:

Crown biomass = $0.0000161411 \times 11.9^{2.4767} = 0.007443$ oven dry tonnes

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.007443 \times 76050 = 566.04$ oven dry tonnes.

Root biomass per tree:

The root biomass for trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the appropriate species-specific parameter from Table 5.2.4 (page 54). So, for Scots pine with quadratic mean dbh 11.9 cm, estimated root biomass per tree is:

Root biomass = $0.000015404 \times 11.9^{2.5} = 0.007525$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.007525 \times 76050 = 572.28$ oven dry tonnes.

107	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(22003.51 + 566.04 + 572.28) \times 0.5 = 11570.92$ tonnes C (carbon).

Stratum III (containing only seedlings):

Average height of seedlings:

The total heights are shown in section 2 of the seedling data collection form (Figure A6.4). There are 10 heights in total which add up to a total of 288 cm. The arithmetic mean height is 28.8 cm.

Number of seedlings in stratum:

Total number of seedlings in all (10) plots = 305

Area of all plots = 10×0.01 ha = 0.1 ha

Average number of seedlings per hectare = 305/0.1 = 3050

Number of trees in compartment = 3050×34 ha (net area) = 103700

Total above ground seedling carbon in stratum:

The mean carbon content of 1000 seedlings derived from Table 6.1.2 (page 63) is 0.0046951 tonnes C (carbon)

The total seedling carbon in the stratum is calculated by multiplying the mean carbon content of 1000 seedlings by the total number of seedlings in the stratum divided by 1000:

 $0.0046951 \times (103700/1000) = 0.487$ tonnes C (carbon).

Т

Stratum IV (using Method B):

Number of trees in stratum:

Total number of trees in all (10) plots = 75

Area of all plots = 10×0.1 ha = 1 ha

Average number of trees per hectare = 75/1 = 75

Number of trees in compartment = 75×26 ha (net area) = 1950

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.6). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 4371.56. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{4371.56} = 66.1 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5.

mean basal area = $\frac{\pi \times 66.1^2}{40000}$ = 0.343 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into Equation 3, described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for oak were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 1166

 $1166 \div 20 = 58.3$ rounded down to a stand tariff number of 58.

109	Versio	on 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	--------	--------	------------------------------	------------

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.343) = 8.255 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 58) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (58 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $8.255 \times 1.00 = 8.255 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $8.255 \times 1950 = 16097.25 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $16097.25 \times 0.56 = 9014.46$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees greater than 50 cm dbh is estimated using Equation 7 (page 53) with the appropriate species-specific parameters from Table 5.2.3 (page 53). So, for oak with quadratic mean dbh 66.1 cm, the estimated crown biomass per tree is:

Crown biomass = $-0.411550464 + 0.013669801 \times 66.1 = 0.492023$ oven dry tonnes

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.492023 \times 1950 = 959.44$ oven dry tonnes.

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). The root biomass for broadleaved trees greater than 30 cm dbh is estimated using Equation 9 (page 55) with the species-specific parameter for red alder from Table 5.2.5 (page 55). So, for oak with quadratic mean dbh 66.1 cm, estimated root biomass per tree is:

Root biomass = $-0.174882004 + 0.009559391 \times 66.1 = 0.456994$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.456994 \times 1950 = 891.14$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(9014.46 + 959.44 + 891.14) \times 0.5 = 5432.52$ tonnes C (carbon).

L

Stratum V (using Method B):

Number of trees in stratum:

Total number of trees in all (10) plots = 194

Area of all plots = 10×0.1 ha = 1 ha

Average number of trees per hectare = 194/1 = 194

Number of trees in compartment = 194×32 ha (net area) = 6208

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.8). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 1530. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{1530} = 39.12 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5.

mean basal area = $\frac{\pi \times 39.12^2}{40000}$ = 0.120 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into Equation 3, described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for oak were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 984.

 $984 \div 20 = 49.2$ rounded down to a stand tariff number of 49.

 112
 Version 2.0
 T.A.R. Jenkins *et al.* 05/03/2018

The mean tree volume is calculated using Equation 5 in Section 4.1.5. Based on the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.120) = 1.793 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 49) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (49 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $1.793 \times 1.00 = 1.793 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $1.793 \times 6208 = 11130.94 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $11130.94 \times 0.56 = 6233.33$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for oak with quadratic mean dbh 39.12 cm, the estimated crown biomass per tree is:

Crown biomass = $0.0000168513 \times 39.12^{2.4767} = 0.148091$ oven dry tonnes

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.148091 \times 6208 = 919.35$ oven dry tonnes.

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). The root biomass for broadleaved trees greater than 30 cm dbh is estimated using Equation 9 (page 55) with the species-specific parameter for red alder from Table 5.2.5 (page 55). So, for oak with quadratic mean dbh 39.12 cm, estimated root biomass per tree is:

Root biomass = $-0.174882004 + 0.009559391 \times 39.12 = 0.199081$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.199081 \times 6208 = 1235.89$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(6233.33 + 919.35 + 1235.89) \times 0.5 = 4194.285$ tonnes C (carbon).

Stratum VI:

Number of trees in stratum:

Total number of trees in all (10) plots = 160

Area of all plots = 10×0.1 ha = 1 ha

Average number of trees per hectare = 160/1 = 160

Number of trees in compartment = 160×10.2 ha (net area) = 1632

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.10). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 628.6. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{628.6} = 25.07$ cm

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 25.07^2}{40000}$ = 0.049 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for oak were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 909.

 $909 \div 20 = 45.45$ rounded down to a stand tariff number of 45.

115	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.049) = 0.643 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 45) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (45 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.643 \times 1.01 = 0.649 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.649 \times 1632 = 1059.87 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $1059.87 \times 0.56 = 593.53$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for oak with quadratic mean dbh 25.07 cm, the estimated crown biomass per tree is:

Crown biomass = $0.0000168513 \times 25.07^{2.4767} = 0.049195$ oven dry tonnes

116	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.049195 \times 1632 = 80.29$ oven dry tonnes.

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). The root biomass for broadleaved trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the species-specific parameter for red alder from Table 5.2.4 (page 54). So, for oak with quadratic mean dbh 25.07 cm, estimated root biomass per tree is:

Root biomass = $0.0000227 \times 25.07^{2.5} = 0.071435$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.071435 \times 1632 = 116.58$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(593.53 + 80.29 + 116.58) \times 0.5 = 395.2$ tonnes C (carbon).

L

Stratum VII (using Method C):

Number of trees in stratum:

Total number of trees in all (10) plots = 95

Area of all plots = 10×0.02 ha = 0.2 ha

Average number of trees per hectare = 95/0.2 = 475

Number of trees in compartment = 475×32 ha (net area) = 15200

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.12). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 375.5. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{375.5} = 19.38$ cm

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 19.38^2}{40000}$ = 0.029 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for Sitka spruce were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 495.

 $495 \div 20 = 24.75$ rounded down to a stand tariff number of 24.

 118
 Version 2.0
 T.A.R. Jenkins *et al.* 05/03/2018

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.029) = 0.194 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 24) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (24 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.194 \times 1.01 = 0.196 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.196 \times 15200 = 2978.29 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $2978.29 \times 0.33 = 982.84$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for Sitka spruce with quadratic mean dbh 19.38 cm, the estimated crown biomass per tree is

Crown biomass = $0.0000144620 \times 19.38^{2.4767} = 0.022316$ oven dry tonnes

119	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.022316 \times 15200 = 339.20$ oven dry tonnes.

Root biomass per tree:

The root biomass for trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the appropriate species-specific parameter from Table 5.2.4 (page 54). So, for Sitka spruce with quadratic mean dbh 19.38 cm, estimated root biomass per tree is:

Root biomass = $0.000020454 \times 11.9^{2.5} = 0.033819$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.033819 \times 15200 = 514.05$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(982.84 + 339.20 + 514.05) \times 0.5 = 918.045$ tonnes C (carbon).

Т

Stratum VIII (using Method C):

Number of trees in stratum:

Total number of trees in all (10) plots = 138

Area of all plots = 10×0.01 ha = 0.1 ha

Average number of trees per hectare = 138/0.1 = 1380

Number of trees in compartment = 1380×32 ha (net area) = 44160

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.14). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 124.5. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{124.5} = 11.16$ cm

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 11.16^2}{40000}$ = 0.010 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for lodgepole pine were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 323.

 $323 \div 20 = 16.15$ rounded down to a stand tariff number of 16.

121	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.01) = 0.036 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 16) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (16 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.036 \times 1.09 = 0.039 \text{ m}^3$ (unrounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.039 \times 44160 = 1732.83 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the nominal specific gravity of the species (see Table 5.2.1):

 $1732.83 \times 0.39 = 675.81$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for lodgepole pine with quadratic mean dbh 11.16 cm, the estimated crown biomass per tree is

Crown biomass = $0.0000176287 \times 11.16^{2.4767} = 0.006934$ oven dry tonnes

122	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.006934 \times 44160 = 306.21$ oven dry tonnes.

Root biomass per tree:

The root biomass for trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the appropriate species-specific parameter from Table 5.2.4 (page 54). So, for lodgepole pine with quadratic mean dbh 11.16 cm, estimated root biomass per tree is:

Root biomass = $0.000017326 \times 11.16^{2.5} = 0.007209$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.007209 \times 44160 = 318.35$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(1732.83 + 306.21 + 318.35) \times 0.5 = 1178.695$ tonnes C (carbon).

L

Stratum IX (using Method B):

Number of trees in stratum:

Total number of trees in all (10) plots = 89

Area of all plots = 10×0.1 ha = 1 ha

Average number of trees per hectare = 89/1 = 89

Number of trees in compartment = 89×17 ha (net area) = 1513

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.16). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 65. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{65} = 8.06 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 8.06^2}{40000}$ = 0.005 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The parameters a1-a3 in the equation differ for each species. In this case, the parameters for mixed broadleaves were selected. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 511.

 $511 \div 20 = 25.55$ rounded down to a stand tariff number of 25.

 124
 Version 2.0
 T.A.R. Jenkins *et al.* 05/03/2018

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.005) = 0.014 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 25) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (25 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.014 \times 1.19 = 0.017 \text{ m}^3$ (rounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.017 \times 1513 = 25.72 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the average nominal specific gravity of the species (see Table 5.2.1):

 $25.72 \times 0.52 = 13.37$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for mixed broadleaves (mapped to oak) with quadratic mean dbh 8.06 cm, the estimated crown biomass per tree is:

Crown biomass = $0.0000168513 \times 8.06^{2.4767} = 0.002960$ oven dry tonnes

125	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.002960 \times 1513 = 4.48$ oven dry tonnes.

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). The root biomass for broadleaved trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the species-specific parameter for red alder from Table 5.2.4 (page 54). So, for mixed broadleaves with quadratic mean dbh 8.06 cm, estimated root biomass per tree is:

Root biomass = $0.000022700 \times 8.06^{2.5} = 0.004187$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.004187 \times 1513 = 6.33$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(25.72 + 4.48 + 6.33) \times 0.5 = 18.265$ tonnes C (carbon).

Т

Stratum X (using Method A):

Number of trees in stratum:

Total number of trees in all (8) plots = 80

Area of all plots = 8×0.02 ha = 0.16 ha

Average number of trees per hectare = 80/0.16 = 500

Number of trees in compartment = 500×4.5 ha (net area) = 2250

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.18). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 444.8. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{444.8} = 21.09 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 21.09^2}{40000}$ = 0.035 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 372.

 $372 \div 16 = 23.25$ rounded down to a stand tariff number of 23.

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.035) = 0.229 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 23) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (23 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.229 \times 1.02 = 0.234 \text{ m}^3$ (rounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.234 \times 2250 = 526.5 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the average nominal specific gravity of the species (see Table 5.2.1):

 $526.5 \times 0.53 = 279.05$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for ash (mapped to oak, see Table 5.2.6 on page 57) with quadratic mean dbh 21.09 cm, the estimated crown biomass per tree is:

Crown biomass = $0.0000168513 \times 21.09^{2.4767} = 0.032061$ oven dry tonnes

128	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.041 \times 2250 = 72.14$ oven dry tonnes.

Root biomass per tree:

There is currently only one set of species specific parameters applicable for use for the estimation of root biomass in broadleaved tree species (see Table 5.2.6 on page 57). The root biomass for broadleaved trees up to and including 30 cm dbh is estimated using Equation 8 (page 54) with the species-specific parameter for red alder from Table 5.2.4 (page 54). So, for ash with quadratic mean dbh 21.09 cm, estimated root biomass per tree is:

Root biomass = $0.000022700 \times 21.09^{2.5} = 0.046368$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.046368 \times 2250 = 104.33$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(279.05 + 72.14 + 104.33) \times 0.5 = 227.76$ tonnes C (carbon).

Т

Stratum XI (using Method A):

Number of trees in stratum:

Total number of trees in all (8) plots = 78

Area of all plots = 8×0.1 ha = 0.8 ha

Average number of trees per hectare = 78/0.8 = 97.5

Number of trees in compartment = 97.5×4.5 ha (net area) = 438.75

Mean (quadratic) dbh:

The number of trees in each dbh class in the stratum (based on adding together the values in each row) is shown in the right-most column of Section 2 of the data collection form (Figure A6.20). Multiplying the trees in each class by the square of the dbh for each class and then adding these results together for each class and dividing by the number of trees measured gives a mean "squared" dbh of 1229.56. The square root of this value gives the mean (quadratic) dbh:

 $\sqrt{1229.56} = 35.07 \text{ cm}$

To calculate mean tree volume at a later stage the mean (quadratic) dbh was converted into the mean basal area using the equation in Section 4.1.5

mean basal area = $\frac{\pi \times 35.07^2}{40000}$ = 0.097 m² (shown to 3 decimal points)

Stand/stratum tariff number:

The stand tariff number is the rounded down mean of the single tree tariff numbers of each height sample tree recorded in Section 3 of the data collection form. The tariff number for each tree is calculated by entering the dbh and height measurements of each tree into the equation described in Section 4.1.5. The results of each calculation should be rounded to the nearest whole tariff number and were entered in to the right-most column of Section 3 of the data collection form. The next step was to add all of the individual tariff numbers for the stratum together, which gave a total of 529.

 $529 \div 16 = 33.06$ rounded down to a stand tariff number of 33.

The mean tree volume is calculated using Equation 5 in Section 4.1.5 using the stand tariff number and the mean basal area (from mean quadratic dbh).

Mean merchantable tree volume = $a_1 + (a_2 \times 0.097) = 0.969 \text{ m}^3$

where:

 $a_1 = (0.0360541 \times 33) - (a_2 \times 0.118288)$ $a_2 = 0.315049301 \times (33 - 0.138763302).$

Mean total stem volume:

To calculate the mean total stem volume, including volume above 7 cm top diameter, the mean merchantable volume is multiplied by the factor given in Table 4.1.9 (page 40) for the appropriate mean (quadratic) dbh:

Mean total stem volume = $0.969 \times 1.00 = 0.969 \text{ m}^3$ (rounded).

Total stem volume of the stratum:

The total stem volume of the stratum is estimated by multiplying the mean total stem volume (per tree) by the estimated number of trees in the stratum:

Total stem volume in stratum = $0.969 \times 438.75 = 425.15 \text{ m}^3$.

Total Biomass of stems:

The total stem biomass is estimated by multiplying the total stem volume of the stratum by the average nominal specific gravity of the species (see Table 5.2.1):

 $425.15 \times 0.33 = 140.29$ oven dry tonnes.

Crown biomass per tree:

The crown biomass (branches and foliage) for trees between 7 cm and 50 cm dbh is estimated using Equation 6 (page52) with the appropriate species-specific parameters from Table 5.2.2 (page 52). So, for Norway spruce with quadratic mean dbh 35.07 cm, the estimated crown biomass per tree is

Crown biomass = $0.0000144620 \times 35.07^{2.4767} = 0.096955$ oven dry tonnes

131	Version 2.0	T.A.R. Jenkins <i>et al.</i>	05/03/2018
-----	-------------	------------------------------	------------

Total crown biomass of the stratum:

The total crown biomass of the stratum is estimated by multiplying the crown biomass (per tree) by the estimated number of trees in the stratum:

Total crown biomass = $0.096955 \times 438.75 = 46.90$ oven dry tonnes.

Root biomass per tree:

The root biomass for trees greater than 30 cm dbh is estimated using Equation 9 (page 55) with the appropriate species-specific parameter from Table 5.2.5 (page 55). So, for Norway spruce with quadratic mean dbh 39.12 cm, estimated root biomass per tree is:

Root biomass = $-0.091547262 + 0.005004152 \times 35.07 = 0.083948$ oven dry tonnes.

Total root biomass of the stratum:

The total root biomass of the stratum is estimated by multiplying the root biomass (per tree) by the estimated number of trees in the stratum:

Total root biomass = $0.083948 \times 438.75 = 40.61$ oven dry tonnes.

Total tree carbon in stratum:

The total tree carbon in the stratum is calculated by adding together the total biomass from the stem, crown and root components in the stratum and multiplying by 0.5:

 $(140.29 + 46.90 + 40.61) \times 0.5 = 113.9$ tonnes C (carbon).

L

For the project:

Total above ground tree carbon for the project:

This is the sum of the carbon estimates for all of the strata in the project:

Total carbon = 109.28 + 11570.92 + 0.48 + 5432.52 + 4194.28 + 395.20 + 918.04 + 1178.69 + 18.26 + 227.76 + 113.90 = 24 159.33 tonnes C (carbon).

The estimated total carbon dioxide sequestered in the project is calculated as:

24 159.33 tonnes C × 44 ÷ 12 = 88 584 tCO₂e

It is this final figure (88 584 tCO $_2$ e) which should be reported under the Woodland Carbon Code.

Т

CARBON ASSESSMENT DATA COLLECTION FORM

SAPLINGS

Section 1 - Basic stand information

Woodland: ROB'S WOOD
Stand/Stratum:
Date measured: 03/02 12011
Measured by: 5. JONES

3)

Section 2 - Details of number of trees

Spec	ies: BI	Plot ne	0: 1	Speci	ies: BI	Plot n	: 2	Speci	es:BI	Plot no	: 3
THE	1444	HHT_	HH	HH	HH	HH	HHT	+++	##	the	HH
HH	111		*	1111				HH	101		
		New york	1	0.00		-	-	-	-	-	
	-	1	10	5.							
-			12	12.1	12						
	-	-	1	-	Course .			1			
	-	-	93		- 2	1	1				
Speci	ies:Bl	Plot no	: 4	Speci	es: BI	Plot no	:5	Specie	es:Bl	Plot no	: 6
HH	-1111	++++	HHT	HH	HH	HH	ant	444	HHT	the	HH
				Ht	HIT	R		HH	-##	JH	Att
Ht	HH	111									
	144	41			3		1000				
	HH	41									
	щ	-				-					_
	JHI	-				4					
	HH								-		

Total	height	s (m)						1
1	2	3	4	5	6	7	8	Number of heights
4.3	3.5	6.4	2.8	67	6.3	59	4.9	measured IO
9	10	11	12	13	14	15	16	
3.1	6.9						-	Sum of heights
17	18	19	20	21	22	23	24	measured 50.8
-							1	

Average height (total of heights + number measured): _____6_m.

Sheet 1 of 1

Т

Figure A6.1: Page 1 of the completed "Saplings" data collection form for Stratum I.

134 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

CARBON ASSESSMENT DATA COLLECTION FORM

SAPLINGS

Section 1 - Basic stand information

Woodland: 206'S WCCD Gross Area: 25 hg Stand/Stratum: I

Net area: 24 hg
 Date measured:
 0310212011
 Plot area:
 0.01 Mg

 Measured by:
 S.30065
 Total area of plots:
 0.1 (ha)

Section 2 - Details of number of trees

Spec	ies:BI	Plot no	0: 7	Spec	ies:B1	Plot ne	0:8	Species: BI Plot no: 9				
HH	.Htt	HT	HH	Ht	Att	HH	HH	the	++++	HHT	++++	
1		1 8		HHT	11.11			THIT			-	
		1	(a)(a)	-	-	-	-		_			
_	-	Californi	Per-	24	-	-	-	-	-	-		
-	-	-146,4(S)		-	-	-	-	-		-	-	
-	-	-			di	-	-	-		-	-	
-	-	-	-	-13	1.4	4	2	-		-	-	
					1	1	P.		-		-	
Speci	ies: BI	Plot no	: 10	Speci	es:	Plot no	0:	Specie	es:	Plot no		
Ht	Ht	HH	HHT	1	1 de	1	P					
HH	111				907		.0					
1				1	-	1 -	E					
_	-				1	100						
	-				-	~	1		-			
		-	-	-	-	-	3	- Stand	1012			
		-	-	-	-	-	1	12 4	1	-	-	
	-	-	-	-	-	-		-	-	-		
-	-	-	-	-	-			L				
									2.99			
Total	heigh	ts (m))	-								
1	2	3		4	5	6	7	8			height	
					-				mea	sured	_	
9	10	11	1	2	13	14	15	16	-			
1.11	-	-	-	-	-				Sum of heights measured		ghts	
17	18	19	2	0	21	22	23	24			-	
-	1	_			-	-	-	-	1			
		inht d	and the									
avera	age ne	igne (t	otal of h	eights +	numbe	r measu	red):			n.		

Sheet 1 of 1

Т

Figure A6.2: Page 2 of the completed "Saplings" data collection form for Stratum I.

135 Version 2.0 T.A.R. Jenkins *et al.*

05/03/2018

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD D

m²

cm

Woodland: 208'S WOOD	_	Tariff number:	19			
Stand/Stratum: 1	-	(based on top height)				
Species: SP	_	Mean basal area:	0.01			
Age:3\	_	Mean dbh:	12			
Gross Area: 50	ha	(estimated from mean basal area)				
Net area: 45	ha	Date measured: 0310212				
Total area of plots:	ha	Measured by: S. JONES				

Dbh	-		Cou	nt of I	trees	(use	a gate	e styl	e, i.e.	M)	_	
(cm)							umb						
(un)	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7		1	11	1	14	1	u	1		1	1		8
89	1	1	K	A. al	1		1	1	1	1			6
	111	11	111	1	11	1	11	1	1	m			13
10	11	1 1	111	1	11	11	111	114	11	JHIT .			25
11	1	1	1000	1	1	1111	1	181	1	1	1		13
12	IH	1444	144	111 111	11	WIT.	119	1	H# 114	1			45
13	111	11	1	1. 30	101	14	111	1	H	11		-	20
14	11	11	111	1 1	1	11	11	n II	1	1			16
15	1	1	11 1	1-	1	-	1.1	1	13	WA			13
16	-	-	1		1L	1	N			1			4
17	-	1	1	0	1	2-2-2	1 322	1	1				1
18	-	-	-	1.1	10.0	10	20	1		_			
19	-		-	-	- 635	1	10	1	1	-	1		
20	-	-		-	-	1000		1	12				
-	-	-	-			1	128	1.00	1	the second	10.0		-
	_	-	-	-		1	120	1000	1.18	Sale	0		
_	-	-	1	-				5 1		2011			
		-	1					See.	1	1		det	_
		_	-					all in	100		1	1	
_			-	-		-		10000	1.5		and and	100	1
	-	-									35		
-					_							100	
		1.0								19			
										1 10	1	1	
_					-				1	1.5		1	
-	-	-	-						1				
	_	-			-								
	-	-	-		1.1	-	-	-		1	-	-	
OTAL	18	16	18	11	16	18	19	15	18	20	-	-	-

Total heights (m)												
1	2	3	4	5	6	7	8	9	10			
10.5	9.4	9.8	11.2	8.3	10.3	10.5	11-2	9.2	10.6			
II	12	13	14	15	16	17	18	19	20			

Top height (mean of total heights): 10.1 m

Sheet 1 of 1

1

Figure A6.3: Completed "Method D" data collection form for Stratum II.

T.A.R. Jenkins *et al.*

CARBON ASSESSMENT DATA COLLECTION FORM

SEEDLINGS

Section 1 - Basic stand information

Woodland: ROB'S WOOD
Stand/Stratum: III
Date measured: 04102/2011
Measured by: S.JONES

Gross Area	: 40 ha	
Net area:	34ha	
Plot area:_	o.oina	
Total area	of plots: O.I	_(ha)

Section 2 - Details of number of trees

Spec	ies: WH	Plot no	1 :0	Speci	ies: WH	Plot n	0:2	Speci	es:WH	Plot ne	:3
HH	HH	Ht.	HIL	Att	111	Att	HH	Att	Ht-	-Htt	
HHT	Att	HH	the	HHT	Att	1111-	the	the	-Ht	_Ht	-1111-
HHT	HIT	13		HIT	HH	the		44	HHL		
		1		100						-	
_	-	0033									
-	-	1	1000	2.	1		-				
_	-	-	1	1.	- 0-	-			_	1	-
	-	-	-	12 1	2	the state	1	-			-
-			-	1	- Allast	Side	1	-		1	
Speci	ies: WH	Plot no	: 4	Speci	es: WH	Plot no	:5	Species: w#Plot no:6			
HH	HH	the	洲十	HHT	-111	Htt	Ht.	THE	the	-111-	+#+
圳十	AHT	HH	HIT	HIT	HIT	Att	、おけて	att	Att	Hit	Att
HI	MT	HH	111	HAT	.Ht	100	15	-11			
-				1	1		1				
_	-				1				in an		
_		-		-	-		1	- All	Service.		
_			-				100	10	ALL STREET		
								1000	1000	2	
								100000000000000000000000000000000000000	-	A 10 1000	

Total	height	s (cm)	2					
1	2	3	3 4 5 6 7	8	Number of heights			
24	49	12	36	48	21	36	45	measured 10
9	10	11	12	13	14	15	16	
16	12							Sum of heights
17	18	19	20	21	22	23	24	measured 288
-								

Average height (total of heights + number measured): 28.8 cm.

Sheet 1 of 1

Т

Figure A6.4: Page 1 of completed "Seedlings" data collection form for Stratum III.

137 | Version 2.0 |

T.A.R. Jenkins *et al.*

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

SEEDLINGS

Section 1 - Basic stand information

Woodland: ROB'S WOOD
Stand/Stratum: III
Date measured: 04 /02 /2011
Measured by: S. Jokes

Gross Area: 40 hg Net area: 34 va Plot area: 0.01 mg Total area of plots: O.1 (ha)

Section 2 - Details of number of trees

Spec	ies:wH	Plot no	1 :7	Speci	ies: WH	Plot no	: 8	Speci	es:WH	Plot no	:9
###	HH	HIT	HIT	HIT	Att	-##	一年	HI	AHT	the	int
444	the	HHL	118	441	the	HIT	444	tit	144	HH-	144
	-	1 - 1		++++	1111	HH	11	1111			1.0
_		1 mile	ar dit	1.00							
_		10000	10	- all			-				
_	-		-	12.0	1000				-		
_	-	_	1	Timen	-						
	-	-		int	1000	the d	1		-	-	-
		-	-	1 Dame		1	4	-			
	ies:WH	Plot no	: 10	Speci	es:	Plot no	4 J	Speci	es:	Plot no	:
TH	Att	the	HH		Page 1	100	1	1			
HIT	Ht	Att	the			18				1	-
HHT	Htt	111			10	7 0	1 de		_		
_		1	_			- Gal	Tanan	-			
	-			-		1	S.S	1990			
_					_		12	- Ac			
				-	-		20	13	111		
							1 des	A.	40°	tie -	
							635.	10.0	194		

otal I	heights	s (cm)					-	
1	2	3	4	5	6	7	8	Number of heights measured
9	10	11	12	13	14	15	16	Sum of heights
17	18	19	20	21	22	23	24	measured

Average height (total of heights + number measured):

Sheet 1 of 1

cm.

Figure A6.5: Page 2 of completed "Seedlings" data collection form for Stratum III.

138 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD B

Section 1 - Basic stand information

Woodland: ROB'S WOOD	Total area of plots: 1 (ha)
Stand/Stratum: IX	Mean basal area: 0.3 m ²
Species: OK	Mean dbh: 66 cm
Age: 133	(estimated from mean basal area)
Gross Area: 31	Date measured: 04 /02/ 2011
Net area: 26	Measured by: S. JONES

Dbh	-	4	Cour	nt of	trees	s (use	gat	e styl	e, <i>i.e</i>	• W)		
(cm)	1.0	2	3	14	5	Plot r	1umb	er 8	9	110	11	12	TOTAL
517	10	6 6		103-4	10	0	1	0	9	10	11	12	TOTAL
52.8	-	-	100	100	-	1	-	-	-	-	-	-	
538	-	1	1		1 400	1	1	-	-	-	-		1
54.8	-	-	-			+	1	40-	-	-	-	-	
55X	1	+	-	1	16	1 -	100	1	1	-	-	-	2
567	1	-	1		100	-	1 495	+	1	-	-	-	
572	-	-	1	1	and the	1	-		-	-	-		2
58.4	-	113	-	1	P Sta	-	P	-	1	-	-	-	
59.8	-	11	-	1	1.00	-	1 second	1		-	-	-	4
60.8	-	-	1	1	1	1	h	tim	-	-		-	
617	1	-	1	1-	1	600	100	1	17	-	16	-	43
62.8	1	-	1	-	-	1	1	H-	10	100.4	(The	-	3
63.9	-	-	-	-	-	-	1	11-	-	T.	-		3
64.9	11	1	1	1	ii	1	11	1	1	1000	-		13
658	1	1	1	1	1	1	1	000	1	15	-	10.000	7
662	1	1	1.		1	1.	1	1	-	11		-	3
67.8	-	1	+	-	-	-	1		-	1		121	1
634	-	1	1	-	1	1	1	1	n			15	8
A.S	-	1		-	1.	1	-	1	11	1.00	100	1000	0
10.8	1	-	1	-	1	-	1	1	-	1		-	5
717	1	-	1	-	1	-	-	-	-	ñ.	-	-	1
72.8	-	1	1	1	-	1	-	1	1		Concerne of	-	5
13.8	-	·	-	-	-	1.	-	1	-	-		-	
74.8	-	-	1	-	-	1	-	-	-		-		-
15x	-	-	-	-	-	-	1	-	-	-			1
162	1					1	-				-		2
17.7													
18.4			1					1	1			-	3
19.8						1		1					-
20.8		1											1
317													
828				1	1								2
83.1			1									-	
TOTAL	7	7	8	7	8	7	8	8	8	7			

Section 2 - Details of number of trees and dbh's in plots

Sheet 1 of 2

Figure A6.6: Page 1 of completed "Method B" data collection form for Stratum IV.

139 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD B

Section 3 - Details of height and diameter sample trees

(code) (cm) (m) (round to neares) 1 OK 64 31.5 57 2 OK 64 33.0 60 3 OK 58 34.7 64 4 OK 68 33.2 59 5 OK 68 30.6 55 7 OK 58 31.4 58 8 OK 65 33.5 60 9 OK 64 30.5 56 10 OK 60 32.2 59
2 OK 64 33.0 60 3 OK 58 34.7 64 4 OK 68 33.2 59 5 OK 65 32.8 59 6 OK 68 30.6 55 7 OK 58 31.4 58 8 OK 65 33.5 60 9 OK 54 30.5 56
3 Ok 58 34.7 64 4 Ok 68 33.2 59 5 Ok 65 32.8 59 6 Ok 68 30.6 55 7 Ok 58 31.4 58 8 Ok 65 33.5 60 9 Ok 64 30.5 56
4 014 68 33.2 59 5 014 65 32.8 59 6 014 68 30.6 55 7 014 58 31.4 58 8 014 65 33.5 60 9 014 64 30.5 56
5 OK 65 32.8 59 6 OK 68 30.6 55 7 OK 58 31.4 58 8 OK 65 33.5 60 9 OK 64 30.5 56
6 0k 68 30.6 55 7 0k 58 31.4 58 8 0k 65 33.5 60 9 0k 64 30.5 56
7 OK 58 31.4 58 8 OK 65 33.5 60 9 OK 64 30.5 56
8 OK 65 33.5 60 9 OK 64 30.5 56
9 OK 64 30.5 56
11 OK 76 34.2 60
12 OK 65 329 59
13 OK 75 31.4 55
14 OK 64 305 56
15 OK 62 31.9 58
16 OK 72 33.0 58
17 OK 68 33.4 60
18 OK 62 30.6 56
19 OK 78 33.8 58
20 OK 63 32.2 59
21
22
23
24
Total: 1166
Mean tariff number: 58
(Rounded down)

Figure A6.7: Page 2 of completed "Method B" data collection form for Stratum IV.

140 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

Sheet 2 of 2

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD B

Section 1 - Basic stand information

Woodland: 208'S WOOP	Total area of plots: 1 (ha)
Stand/Stratum: I	Mean basal area: O·1m ²
Species: OK	Mean dbh: 3A cm
Age: 89	(estimated from mean basal area)
Gross Area: 37	Date measured: 04 102/2011
Net area: 32	Measured by: S. JONES

Dbh	-	10	Cour	nt of	trees	(US	e gate numb	e styl	e, i.e	. IK		-	
(cm)	1	12	1 3	14	15	6	7	8	19	10	111	12	TOTAL
7	1 30	-	1	1	1	1	1		-	1.0			1.0 Arta
8	1		1000	1.00	-		1	1		1	-		
9		0	1	1.1		100	1			1			-
30					1	1 11	1	1-	-	-			
31			1 2	Para la	1.10	1	100						
32	-		1	1-2	1.52		15						1
33	1		1	1	1	100	-						1
34	1	1	1		11	D	1	4					٦
35	HIT	11	11	W	1	1	1	1-	11	1	12		19
36	N	1		1	1 -		11	11	1		100	-	8
37		1	N	1111	INI	194	1.55	10	INN	10	100		26
38	IN	1	11	1111	111	1	1	1	III	4	10		20
39	N	1.1	1	111	WI	111	BB	101	JHT-1	1.181	1		36
40	.11	11	111	111	11	11	111	1111	N	11			23
41		1	1	1.1.1	1	1	11	4	UN	-		1	15
42	1	14	1		V	11	11	111	1	N	J.		16
43	15	1	1		1	1		1	1	1	10	-	7
44	1		1				1	1		1	101.000	HE.	4
4.5	1		1	1	11					- AC	1	Pre-	5
46	N		1	11	1					1	2		6
47			1		1								-
48											-	1000	
49													
50	-					-					1		
1											1		
2			1										
3													
4										-			
5			1								1		
6													
7									1				
8													
9	-							-					
TOTAL	24	14	18	20	23	15	18	22	24	16			

Section 2 - Details of number of trees and dbh's in plots

Sheet 1 of 2

Figure A6.8: Page 1 of completed "Method B" data collection form for Stratum V.

141 Version 2.0

T.A.R. Jenkins *et al.*

METHOD B

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Timber height (m)	Tariff number (round to nearest)
1	OK	38	22.5	46
2	OK			53
3	OK	37	26.3	
4	OK	40	22.9	46
5	A	35	23.6	48
	OK	38	24.9	50
6	OK	35	24.5	50
7	OK	36	25.2	51
8	OK	37	24.8	50
9	OK	39	24.1	49
10	OK	39	23.9	48
11	OK	46	23.5	47
12	OK	37	24.6	D
13	OK	_37	23.9	49
14	OK	45	24.0	48
15	OK	40	23.9	48
16	OK	38	25.1	51
17	OK	38	24.9	50
18	OK	46	25.0	49
19	OK	39	256	51
20	OK	40	24.8	50
21				.69 4
22				197 AS
23			100 m	1
24				A land
			Total:	984
	Mea	n tariff	number:	49

Sheet 2 of 2

Figure A6.9: Page 2 of completed "Method B" data collection form for Stratum V.

142 Version 2.0

T.A.R. Jenkins *et al.*

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD B

Section 1 - Basic stand information

Woodland: ROB'S WOOD	Total area of plots: 1 (ha)
Stand/Stratum: II	Mean basal area: 0.05 m²
Species: OK	Mean dbh: 25 cm
Age: 51	(estimated from mean basal area)
Gross Area: 12	Date measured: 03/02/2011
Net area: 10-2	Measured by: # . McDuFF

Dbh	-		Cou	nt of					e, i.e	. Ш.)		-
(cm)	1.	2	3	14	15	6	umb	er 8	19	110	11	12	TOTAL
7			-	1	- 15 P.		1		12	140		14	10114
8	-		1	-Toris	the state	-		1	-	-	-	-	-
9	-	10		-	5 100	100	-	-	-	-	-	-	-
20	-	-	1	1	1000	1	1 2	1	-	-	-	-	2
21	-	-	100	10	1	1	120	-	-	-		-	-
22	4	11	m	1	1	11	1	1	1	1	-	-	
23		1	100	1 3	i.	1.00	W	1	11	1	-	-	15
24	11	1	1	1	i -	M	114	1	81	INN	-	-	9
25	JHT 1	and the second s	-	hu	im	SHI.	Hit I	JAN TE	JWF 1		-	-	20
26	att	att	m	111	111	m	111	inti Inti	- in	in the	-	-	30
27	11	1	11	81	100	11	114	11	1100		1	-	38
28	1	1	1	101	1	1	M	1000	4.00	11	100	-	14
29	-			-	1	1	1	1	1		1	-	10
30	-		-	-	-	-	1-1-1-	140	-	1	-	-	-
1			-	-	1	-	-	1.00	12	1	-	1000	-
2		-	-	-	-	+	1	different second		-	- 20		5
3				-	-	-	-		and the	-	100		3.
.4			-	-	-	-	-	-	-	1		-	-
5			-		-		1	-	-	-	-	-	-
6		-	-	-	-	-	-	-	-	and and a second		-	-
7					-	-		-	-	100	129	-	-
8			-		-	-	1		-		-	-	-
9	-	-			-	-	-	-		-			-
0		1			-				-		-		-
1		-	-	-	-	-	-	-			-	-	
2		-					-		-		-	-	-
3					-	-			-		-	-	
4						-			-		-	-	-
5									-		-	-	
6		-				-					-	-	
7											-		-
8	-	-											
9	-										-		-
TOTAL	20	18	14	13	=	16	19	13	18	18	-		

Section 2 - Details of number of trees and dbh's in plots

Sheet 1 of 2

Figure A6.10: Page 1 of completed "Method B" data collection form for Stratum VI.

143 Version 2.0

T.A.R. Jenkins *et al.*

METHOD B

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Timber height (m)	Tariff number (round to nearest
1	OK	26	21.5	46
2	OK	28	22.0	46
3	OK	23	21.0	45
4	OK	26	20.4	44
5	OK	25	21.7	46
6	OK	25	21.3	46
7	OK	24	22.0	47
8	GK	26	21.6	46
9	OK	22	20.9	45
10	OK	25	20.7	44
.11	OK	26	20.3	44
12	OK	28	21.4	45
13	OK	23	20.7	45
14	OK	26	20.8	44
15	CK.	25	20.7	44
16	OIL	25	21.5	46
17	OK	24	21.7	46
18	OK	26	21.8	46
19	OK	22	22.4	48
20	OK.	25	21.6	46
21			and the second	100
22			1 3	
23			and a second	7
24				1
			Total:	909
	Mea	n tariff	number:	45
			nded down)	

Figure A6.11: Page 2 of completed "Method B" data collection form for Stratum VI.

144 Version 2.0

T.A.R. Jenkins *et al.*

METHOD C

Section 1 - Basic stand information

Woodland: ROBIS WOOD	Total area of plots: 0:2 (ha)
Stand/Stratum: VII	Mean basal area: 0.03 m ²
Species: SS	Mean dbh: <u>19</u> cm
Age: 27	(estimated from mean basal area)
Gross Area: 37.5 na	Date measured: 0310212011
Net area: 32 ng	Measured by: H. McDuFF.

Dbh	-	10th	Cour	nt of	trees	(use	gate	e styl	e, i.e	. #1)		
(cm)		188	90 -	1			umb				_		
	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7			100	1	- 33								
8		1		1000	1.1	1	1						
9		- 20	1	1	1.1	A COLOR		-					
0	1		6			1	1						
1					1		1000						
2					180								
3				1 3			-						
4			1		100					1	1		
15						1	Present.	ALL COL				1.	5
16		1		1	11	11		1	N	14			10
17	1	1				13	4	H	1		and a		8
18	W	11	W	W	111	1	TH.	U.	11	HIT	15		22
19	IN	1	1111	1	1	111	A Comment	100		- and	-		13
20	1	1	1	1	11	11	1-	m	1				13
21	1	1	1	1		1	11	1.3.2	1	1		-	7
22	11	111	1	n	INI	111	-	1000	11	111	1 alter	1000	21
23				-		-		-	11	1	21.00	-	1
24				-		-	-	-	-	10	1	1	-
25	1	1			1						-		1
6										1.000			1
7	-			1	-		1			120	in a		
8		-		1	-	-	-	-	-	10			
9	1			-			1	-	-	-		-	-
0	-					-							-
1		1			-						-		
2													
3	-		-								-		
4	1				-	-		1		1	-	-	
5											-	-	-
6	-												
7	1		-		-						-	-	-
8					-	-	-			-	-	-	
9	-										-		-
TOTAL	10	10	9	8	11	9	10	9	8	11	-		-

Section 2 - Details of number of trees and dbh's in plots

Sheet 1 of 2

Т

Figure A6.12: Page 1 of completed "Method C" data collection form for Stratum VII.

145 Version 2.0

T.A.R. Jenkins *et al.*

METHOD C

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Total height (m)	Tariff number (round to nearest
1	55	21	B.1	23
2	55	19	13.6	24
3	55	18	14.6	27
4	55	18	15.0	27
5	SS	22	13.5	23
6	SS	21	13.6	24
. 7	55	19	15.1	27
8	38	18	13.9	25
9	55	18	14.2	26
10	55	22	13.6	23
11	55	21	14-1	25
12	55	19	13.2	24
13	85	18	14.0	26
14	35	18	14.3	26
15	55	22	13.9	24
16	55	21	13.4	23
17	85	19	13.3	24
18	85	18	13.9	25
19	36	18	13.8	. 25
20	55	22	14.0	24
21			-	
22				10 m
23				and the second s
24		-		52
			Total:	495
	Mea	n tariff	number:	24
		(Rou	nded down)	

Sheet 2 of 2

Figure A6.13: Page 2 of completed "Method C" data collection form for Stratum VII.

146 Version 2.0

T.A.R. Jenkins *et al.*

METHOD C

Section 1 - Basic stand information

Woodland: ROB'S WOOD	Total area of plots: 0.1 (ha)
Stand/Stratum: VIII	Mean basal area: 0.01 m ²
Species: LP	Mean dbh:iicm
Age: 27	(estimated from mean basal area)
Gross Area: 37.5 ha	Date measured: 03/02/2011
Net area: 32.hg	Measured by: H. McDuff.

	-	<u>.</u>	BH1)	, i.e.				rees	t of t	Cour	-	-	Dbh
TOTAL	12	11	10	9	8	umbe	fot n	5	4	3	2	1	(cm)
2	14	44	1		0	1	1	J.	1	4.1	4	-	7
6			1	11	1	1	1	-	4012	1457	2	-	8
24	-	-	IN		WHT	IIII	111	A	1	1		111	9
33		-	Litt 1		11		SHI	H	111	1	111	N	10
21		-	11		111	11	un	-	H	mi	n.	a	11
22	-			1	11	N	11	10	tti	111	n	101	12
17	1000	-		-		all.	-	Wa	111	111	H	Int	13
	1	-				0.48		14 1	11	1		1	14
4			1		1.1	100		1.	11	-	11	1	15
3			1	2	100 m	100	100	1		1		1	16
		alle:			1	All of	Sec.	-		1000		-	17
			14 14		-	19	-						18
		-	1998	1.	er.	Test	1					-	19
	-			10	and a	100							20
			1	-	E.	-				-			1
		0.000		120	1- 201								2
					1								3
		100	1	-		1							4
			4 100			1		-					5
			1000										6
		dini -	1		1						S		7
		35	3600			S					1		8
													9
	_												0
			1					-	-				1
		2						1	-				2
		1			1				1				3
			-	-	1								4
												_	5
	-					_	_					_	6
						-	-	1				-	7
	-	-	-	_		-					_		8
		1				-					1.1	-	9
			13	14	13	12	16	13	17	15	11	15	OTAL

Section 2 - Details of number of trees and dbh's in plots

Figure A6.14: Page 1 of completed "Method C" data collection form for Stratum VIII.

147 | Version 2.0 |

T.A.R. Jenkins *et al.*

05/03/2018

T.

METHOD C

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Total height (m)	Tariff number (round to nearest)
1	LP	10	8.4	18
2	LP	11	8.5	18
3	LP	8	8.0	19
4	LP	11	10.6	22
5	LP	11	7.9	17
6	LP	12	8.3	ī
7	LP	13	10.3	20
8	LP	16	10.6	19
. 9	LP	12	9.6	19
10	LP	10	8.4	18
11	49	9	9.2	21
12	LP	13	8.6	п
13	18	15	9.2	16
14	LP	10	7.9	n
15	LP	13	9.5	18
16	LP	12	8.0	16
17	LP	10	7.5	n
18	LP	10	8.0	18
19	LP	9	85	19 19
20	LP	13	8.2	16
21			and and	ALC .
22				200
23			and the second se	and the second
24				0.0
	-		Total:	362
	Mea	n tariff i	number:	18
	Como		ded down)	and the second s

Sheet 2 of 2

T.

Figure A6.15: Page 2 of completed "Method C" data collection form for Stratum VIII.

148 Version 2.0

T.A.R. Jenkins *et al.*

METHOD B

Section 1 - Basic stand information

Woodland: ROB'S WOOD	Total area of plots: (ha)
Stand/Stratum: IX	Mean basal area: 0.005 m ²
Species: MB	Mean dbh: 8 cm
Age:_ 11	(estimated from mean basal area)
Gross Area: 20hg	Date measured: 04 102 1201
Net area: 17ha	Measured by: R. BROWN

Dbh	-	Count of trees (use gate style, <i>i.e.</i> M) Plot number											
(cm)	1	1 2	3	4	15	6	7	8	9	10	11	12	TOTAL
7	11	111	111	INI.	HI.	11	HIT	11	1111	1			
8	Ini	1111	11	16	1413	-	1 mar	144	1111	att			29
9	11	1	1	1	1111	1	11	11	1	1			lb
10		1	1	1	199	1	1.1	T	1	1		1.000	16
11		-		1	1	1	100						
12				100	1810	14	Story.						
3				1	45	1.30	1						
4					120	15	dist						
5				1	10	1 1	his .	- CEN	1				1
6					100	13	1	15	10				
7	-			-		100	200	A	1	1	A.		
8			-				1	I.S. I	1	S. 4	17		
9							1	100	1.4	1	1		
0							-	1	F	100		-	-
1								18-5	5	1		APRIL .	
2			1		-			1.1.1	-		18	125	1
2 3									1		16.1		1
4							-			1	1. 15	120	
5			1.1				100			1.100	100	3	
6							-				120	1	
7	1						1			1.000	1.0		
8										100			
9				-									
0											1		-
1											-		
2			-		1		-						
3	-												_
4											-		-
5			-										-
6							-						
7							-						-
8													
9	-												
DTAL	7	9	7	8	10	11	8	9	10	10			

Section 2 - Details of number of trees and dbh's in plots

Sheet 1 of 2

Figure A6.16: Page 1 of completed "Method B" data collection form for Stratum IX.

149 Version 2.0

T.A.R. Jenkins *et al.*

METHOD B

Section 3 - Details of height and diameter sample trees

No.	Species	Dbh	Timber height	Tariff number
	(code)	(cm)	(m)	(round to nearest)
1	BI	٦	7.8	22
2	AH	٦	8.1	23
3	BI	8	9.6	25
4	AH	8	10.5	26
5	AH	8	10.8	26
6	54	9	9.6	24
7	AH	9	9.5	28
8	54	7	85	23
9	BI	9	9.4	25
10	BI	9	10.6	27
11	BI	.8	9.2	24
12	PH	8	80	26
13	AH	9	10.3	28
14	81	9	10.6	27
15	BI	7	. 89	24
16	BI	11	19	22
17	BI	7	8.0	22
18	AH	8	8.4	26
19	AH	8	10.1	26
20	BI	8	9.6	25
21	0.	0	1.0	- The second
22		_	- Andri	100 2
23			13	No.
24				
24	-	_		
	Mea	n tariff i	Total: number:	499

Figure A6.17: Page 2 of completed "Method B" data collection form for Stratum IX.

150 Version 2.0

T.A.R. Jenkins *et al.*

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD A

Section 1 - Basic Assessment Information

Woodland: 206	B'S WOOD
Species: AH	
Date measured:	04 102/2011
Measured by:	

Stratum: X Total area of plots (ha): 0.8 Gross area (ha): 5 Net area (ha):____ 45

Section 2 - Details of number of trees and dbh's in plots

Dbh	-	-	Cou	int of	tree	s (us	e gat	e sty	le, i.e	e. (H)	_	-	
(cm)	1	2	3	4	15	6	7	8	9	10	11	12	TOTAL
17			1 2				1						2
1B A	1		H	1		11		1					٦
A		4	1		1		11	1					5
20	101	17	10 .0	10	11	4	1	m					17
21	1	101	123	M	MIT	1	11	14	1)				18
22 23 24 25	1.45	1	10	N	10	1	1	111				1.11	13
23	11	1.000	-11	1	1		11	1				-	12
24	1	1.15	11	1.1-		1.00		1	1				42
25		100	1		26	24	1						2
			12			12	A.C.	1	1				
			1	1 m	100	1	(Fail)				1.1		
-			1	1		1	in.						
_			1	1.12		11-20	STATE.					1	
			1		1	1	1.2	Le nort	1				
	-		1	1	der	dil.	1 all	1	11.0				
			0		100	1388	1000	1					
			1		1	P 1		53			5	1	
_						100	1 1	12	1.00				
			1	-			1 200	1	March 1	Cale.			
							120	10 mm	_	· · · ·			
							-	100 - 1	200			min	
	1							12 - 1	1		1	1.1	
						0		100			121	5.2	
		-				1				No.	10	1	
			-						Ali	Paral of a state			1
			1				-		20	1	in the second		
										1		1	
		-								134			
-				1			1						
_		-							-			-	-
OTAL	9	8	N	9	11	ID	10	12			-	-	

Sheet 1 of 2

Figure A6.18: Page 1 of completed "Method A" data collection form for Stratum X.

151 Version 2.0

T.A.R. Jenkins *et al.*

METHOD A

Section 3 - Details of height and diameter sample trees

N.B. For conifer species record total height; for broadleaved species record timber height. Tariff number should be rounded to the nearest whole number, except where stated otherwise.

No.	Species code	Dbh (cm)	Height (m)	Mid diameter (cm)	Volume (m)	Tariff no,
1	AH	24	15.6	11	0.15	- 11
2	AH	23	IT-5	12	0.20	17
3	AH	20	16.4	15	0.29	33
4	AH.	21	16.8	14	0.26	26
5	AH .	20	15.8	11	0.15	17
6	AH	24	14.6	15	0.26	20
7	PH	20	15.8	10	0.12	13
8	AH	2)	164	is	0.29	30
9	AH	21	10.2	16	0.33	34
10	AH	21	15.4	16	0.31	32
11	AH	20	159	13	0.21	24
12	AH	24	15.6	12	0.1B	14
13	AH	22	16.7	12	0.19	17
14	AH .	20	165	14	0.25	28
15	Att	20	16.0	16	0.32	36
16	PH	21	14.8	13	0.20	20
17						
18				1.1.1	1.17	
19				B		
20						111
21				24		5.2
22						
23					No. Inc.	1
24						1
25						
			Tota	i (by specie Mean tariff (Round		372 23

Sheet 2 of 2

Figure A6.19: Page 2 of completed "Method A" data collection form for Stratum X.

152 Version 2.0 1 T.A.R. Jenkins *et al.*

Forestry Commission Carbon assessment protocol

CARBON ASSESSMENT DATA COLLECTION FORM

METHOD A

Section 1 - Basic Assessment Information

Woodland:	ROB'S WOOD
Species:	NS
Date measu	ired: 04 102 1 20 11
Measured b	V: R. BROWN

Stratum: _____ Total area of plots (ha): 0.8 Gross area (ha): 5 4.5 Net area (ha):___

Section 2 - Details of number of trees and dbh's in plots

Dbh (cm)	-	-	Cou	int of	tree	s (us Plot n	e gat	e sty	le, i.e	. (H)	-	-	
	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
27			1	2		1		1					
2.3			10B	1									
29	1	di di	1200	1		-			-				
20	1	100	138	100003		1		-					2
31		1	2.1	100	1	1							22
31 32 33	1.450	1 23	100	11		1	1				1		5
33	- autor	-	1	n	11		-	hes			1		500
24	1	1	101	14	11	1	1	hui.			-		12
34	1	B	HIT	1	III	10	HHT	n					22
36		n	1.85	11	11	11	11	1					10
37	1	1	10.00	W	127	11	1	1					8
38	1	1	1			1	1	1					4
35389				1000	1	10.0	-	1			1		2
40	1	-	1	1	1 12	P. C.	150						4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				-	1000	2	1	1000					~~
-				-	1	1 dillo	100	- 0					
		-				1 3	12	1000					-
-				-		30	1	1.3	a feller		-		
		1				1 20	100	1 14	(Carl	1	-		
						1 1	10-	ABAR		2	-		
-							1	DUCT .	1000	-		.0.	
							1	1200	1				
								100			1.5	-	
- /		-	1						1	-		- I	_
		-							- unter		A STATE		
									in it		-		
		-			-	-			-	1	1		
		-							-		-	-	
									-		-		
	10	-											
-	-	-				1			-				-
OTAL	7	8	10	11	10	11	10	11	1	-			

Sheet 1 of 2

1

Figure A6.20: Page 1 of completed "Method A" data collection form for Stratum XI.

153 Version 2.0

T.A.R. Jenkins *et al.*

METHOD A

Section 3 - Details of height and diameter sample trees

N.B. For conifer species record total height; for broadleaved species record timber height. Tariff number should be rounded to the nearest whole number, except where stated otherwise.

34 40 35 36 40 35 38 37 33 33 33 33 34 35 34 35 36 34	21.6 21.8 22.6 22.7 23.0 20.4 21.8 21.8 21.5 21.6 21.6 21.7	24 23 24 26 22 25 23 23 24 25 21 23 23 23 23	0.90 0.85 0.98 1.16 0.86 1.11 0.96 0.92 1.07 0.92 0.92 0.90	33 22 34 31 22 38 37 28 42 21 31 29
35 36 40 35 33 37 33 33 33 34 35 36 36	21.6 21.8 22.6 22.7 23.0 20.4 21.8 21.8 21.5 21.6 21.6 21.7	24 26 22 25 23 24 25 21 23	0.98 1.16 0.86 1.11 0.96 0.92 1.07 0.74 090	22 34 37 22 38 37 28 42 27 31
36 40 35 33 37 83 37 83 34 35 36 36	21.8 22.6 22.7 23.0 20.4 21.8 21.3 21.6 21.6	26 22 25 23 24 25 21 23	1.16 0.86 1.11 0.96 0.92 1.07 0.74 0.90	37 22 38 37 28 42 27 31
40 35 33 33 37 83 34 5 34 5 36	22.6 22.7 230 20.4 21.8 21.8 21.5 21.6 21.6	22 25 23 24 25 21 23	1.16 0.86 1.11 0.96 0.92 1.07 0.74 0.90	37 22 38 37 28 42 27 31
85 33 37 83 34 36 36	22.6 22.7 230 20.4 21.8 21.8 21.5 21.6 21.6	25 23 24 25 21 23	1.11 0.96 0.92 1.07 0.74 090	22 38 37 28 42 21 31
33 37 33 34 35 34 35 36	23-0 20-4 21-8 21-8 21-6 21-6 21-7	23 24 25 21 23	0.96 0.92 1.07 0.74 090	38 37 28 42 27 31
33 37 33 34 35 36	23-0 20-4 21-8 21-8 21-6 21-6 21-7	24 25 21 23	0.92 1.07 0.74 090	37 28 42 27 31
37 33 34 35 36	21.8 21.3 21.6 21.6	25 21 23	0.74 0.74	28 42 27 31
83 34 35 36	21.3	25 21 23	0.74	42 27 31
35	21.6	21	090	27
36	21.7	23		31
	and the second second second		0.90	
24				
01	21-8	25	1.07	39
5 35	20.6		1.09	38
33	203	24	0.94	37
33	22.5	23	0.93	36
		000	-	
			1 all and the second se	
1			-	
1				Ser of
				1054
				1
-				
		Tota	Mean tarif	Total (by species group): Mean tariff number: (Rounded down)

Sheet 2 of 2

Т

Figure A6.21: Page 2 of completed "Method A" data collection form for Stratum XI.

T.A.R. Jenkins *et al.*

Appendix 7: Blank Data Collection Forms

155 Version 2.0

T.A.R. Jenkins *et al.*

05/03/2018

Т

Section 1 - Basic stand information

Woodland:	Gross Area:	ha
Stand/Stratum:	Net area:	ha
Date measured:	Plot area:	ha
Measured by:	Total area of plots:	ha

Section 2 - Details of number of trees

Plot no		Speci	es:	Plot no	: 	Speci	es:	Plot no	:
	$\overline{\mathbb{A}}$								
			1						
1									
Plot no	:	Speci	es:	Plot no		Speci	es:	Plot no	1
									<u> </u>
	Plot no	Plot no:	Plot no: Speci	Plot no: Species: Plot no: Species: Plot no: Species:	Plot no: Species: Plot no	Plot no: Species: Plot no: Image: Species: Image: Species: Image: Spec	Plot no: Species: Plot no: Specie I I I I I I I I I I I I I I I I I I I	Plot no: Species: Plot no: Species: Image: strain	Plot no: Species: Plot no: Species: Plot no: Species: Plot no I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

]						5 (cm)	heights	Total
Number of height	8	7	6	5	4	3	2	1
measured								
	16	15	14	13	12	11	10	9
Sum of heights								
measured	24	23	22	21	20	19	18	17

Average height (total of heights ÷ number measured): _____Cm.

Section 1 - Basic stand information

Woodland:	Gross Area:	ha
Stand/Stratum:	Net area:	ha
Date measured:	Plot area:	ha
Measured by:	Total area of plots:	ha

Section 2 - Details of number of trees

Count of	tre	es (u	se gat	e style	e, <i>i.e.</i> I	H)					
Species: Plot no:				Species: Plot no:			Species: Plot			no:	
Species:	Ρ	lot no	:	Speci	es:	Plot no	:	Speci	es:	Plot no):

						5 (m)	heights	Total
Number of height	8	7	6	5	4	3	2	1
measured								
	16	15	14	13	12	11	10	9
Sum of heights								
measured	24	23	22	21	20	19	18	17
]								

Average height (total of heights ÷ number measured): ______m.

Section 1 – Basic Assessment Information

Woodland:	Stratum:	
Species:	Total area of plots:	ha
Date measured:	Gross area:	ha
Measured by:	Net area (ha):	ha

Section 2 - Details of number of trees and dbh's in plots

Dbh			Cou	nt of	trees (use gate style, <i>i.e.</i> ⊮)								
(cm)			Plot number										
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
		· ·											
										~			
TOTAL													

Section 3 – Details of height and diameter sample trees

N.B. For conifer species record total height; for broadleaved species record timber height. Tariff number should be rounded to the nearest whole number, except where stated otherwise.

No.	Species code	Dbh (cm)	Height (m)	Mid diameter (cm)	Volume (m)	Tariff no.
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
			Tota	al (by specie Mean tarif (Roun		

Section 1 - Basic stand information

Woodland:		Total area of plots:	ha
Stand/Stratum:		Mean basal area:	_ m ²
Species:		Mean dbh:	_ cm
Age:		(estimated from mean basal area)	
Gross Area:	ha	Date measured:	-
Net area:	ha	Measured by:	-

Section 2 - Details of number of trees and dbh's in plots

Dbh			Cou	nt of	trees	s (use	e gato	e styl	le, <i>i.e</i>	.₩)			
	Plot nu			umbe	er								
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7													
8													
9													
0		*											
1													
2													
3													
4													
5													
6													
7													
8													
9													
0													
1													
2													
3													
4													
5													
6									•				
7													
8													
9													
0													
1													
2													
3													
4													
5													
6													
7													
8													
9													
TOTAL													

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Timber height (m)	Tariff number (round to nearest)
1				
2				
3				
4				
5	Â			
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
	Mea		Total: number:	

Section 1 - Basic stand information

Woodland:		Total area of plots:	ha
Stand/Stratum:		Mean basal area:	_ m ²
Species:		Mean dbh:	_ cm
Age:	_	(estimated from mean basal area)	
Gross Area:	_ ha	Date measured:	-
Net area:	_ ha	Measured by:	_

Section 2 - Details of number of trees and dbh's in plots

Dbh			Cou	nt of	trees	s (use	e gate	e styl	e, <i>i.</i> e	.⊮)			
(cm)						lot n							
	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
7													
8													
9													
0													
1													
2													
3													
4													
5													
6													
7													
8													
9													
0													
1													
2													
3													
4													
5													
6													
7													
8													
9													
0													
1													
2													
3													
4													
5													
6													
7													
8													
9													
TOTAL													

Section 3 - Details of height and diameter sample trees

No.	Species (code)	Dbh (cm)	Total height (m)	Tariff number (round to nearest)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
	Меа	n tariff	Total: number:	
		(Rour	nded down)	

Woodland:		Tariff number:			
Stand/Stratum:		(based on top height)			
Species:		Mean basal area:	m²		
Age:		Mean dbh:	cm		
Gross Area:		(estimated from mean basal area)			
Net area:	ha	Date measured:			
Total area of plots:	ha	Measured by:			

Dbh		Count of trees (use gate style, <i>i.e.</i> ₩)													
(cm)		Plot number													
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL		
	-														
TOTAL															

Total heights (m)											
1	2	3	4	5	6	7	8	9	10		
11	12	13	14	15	16	17	18	19	20		

Top height (mean of total heights): _____m

Section 1 – Basic Assessment Information

Woodland:	Compartment(s):
Species:	Gross area (ha):
Diameter sampling fraction:1:Height sampling fraction:1:	Net area (ha):
Date measured:	Measured by:

Section 2 – Details of height and diameter sample trees

N.B. For conifer species record total height; for broadleaved species record timber height and total height. Tariff number should be rounded to the nearest whole number, except where stated otherwise.

No.	Spp	Dbh	H _{timb}	H _{total}	Tariff	No.	Spp	Dbh	H _{timb}	H _{total}	Tariff
	code	(cm)	(m)	(m)	no.		code	(cm)	(m)	(m)	no.
1						26					
2						27					
3						28					
4						29					
5						30					
6						31					
7						32					
8						33					
9						34					
10						35					
11						36					
12						37					
13						38					
14						39					
15						40					
16						41					
17						42					
18						43					
19						44					
20						45					
21						46					
22						47					
23						48					
24						49					
25						50					
	Total	(by sp	ecies gi	roup):			Total ((by spe	cies gr	oup):	
			ariff nu					lean ta			
			ounded		1				unded		

Section 3 – Full tree tally

Specie	s:				Species:					
Total number:					Total number:					

Mean dbh = $sqrt(mean dbh^2)$

Species: Species: (4) (1) (2) (3) (4) (5) (2) (3) (5) n×dbh² dbh² dbh² Ν n×dbh² Dbh tally tally n 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Col. totals (Σ) Mean dbh² = $\Sigma(5)$ ÷ $\Sigma(3)$ ${\rm m}^2$ Mean ba = $\mathbf{n} \times$ mean dbh² ÷ 40000 m^2

ст

Section 4 – Diameter distribution & calculation of mean basal area.

ст